题目链接

题目描述

给你一个 01 串,有 \(q\) 个时刻,每个时刻要么把一位取反,要么问你在过去的所有时刻中有多少个时刻 \(a\) 和 \(b-1\) 之间都为 1。

题目分析

观察题目,我们会发现可以把全为 1 的段看做一个连通块,如果两个位置在一个块内则可以互相到达,修改某个位置的值就相当于把两边的连通块合并或者分裂。

但是我们此时并非维护一个动态的连通块,而是需要知道所有时刻的信息,但是如果又把所有时刻遍历一遍会超时,考虑能不能用空间换时间,储存下所有时刻的信息方便维护。

容易观察到,维护一个连通块的目的无非是为了检查某两个点联不联通,那么我们可以抛弃连通块,转而维护两个点联通的时间数,这看似有些暴力,毕竟从空间复杂度上看 \(n^2\) 规模就已经超标了,别急,让我们先看看题目怎么操作。

对于一个询问操作自然没什么好说的,那么对于修改操作则如先前所述是将两边连通块分裂或者合并,我们把操作更改一下,记 \(l_1\),\(r_1\),\(l_2\),\(r_2\) 分别为两边连通块的左右端点,则合并操作表示所有左端点在 \([l_1,r_1]\) 内,右端点在 \([l_2,r_2]\) 的点对以后都联通,分裂相反。

注意到受影响的点实际上在平面内构成一个矩形,而询问相当于单点求值,我们能不能把修改转化成对于矩形的修改呢?当然可以,我们把对于一个点实际有效的时间段抽出来看,它实际上可以差分成一次单点加和单点减。

记当前时刻为 \(t\),只要合并时把整个矩形加上 \(q-t\),分裂时减去 \(q-t\) 即可,差分后可以使用 cdq 分治或者树套树解决,另外要注意的是查询时如果还联通,由于不考虑以后的时间,要将答案减去 \(q-t\)。

那么左右联通块如何维护呢,其实很简单,要么模仿珂朵莉树用 set 维护,要么用一颗线段树维护查询时二分即可,笔者这里使用了线段树的写法,不过细节多而且复杂度较高,还是建议使用 set 维护。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#include<cstring>
#define ite set<pai>::iterator
#define N 300005
using namespace std;
int read(){
int x=0,f=1;
char ch=getchar();
while(ch<'0' || ch>'9'){
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*f;
}
int tot,num,sta[N];
int a[N],rt[N];
int n,q;
struct Node{
int ls,rs,sum;
#define ls(x) tr[x].ls
#define rs(x) tr[x].rs
#define s(x) tr[x].sum
}tr[N<<8];
int query(int x,int l,int r,int L,int R){
if(!x) return 0;
if(L>=l && R<=r)return s(x);
int mid=(L+R)>>1,ans=0;
if(l<=mid) ans+=query(ls(x),l,r,L,mid);
if(r>mid) ans+=query(rs(x),l,r,mid+1,R);
return ans;
}
void change(int &x,int p,int L,int R,int s){
if(!x) x=++tot;
s(x)+=s;if(L==R) return;
int mid=(L+R)>>1;
if(p<=mid) change(ls(x),p,L,mid,s);
else change(rs(x),p,mid+1,R,s);
}
int lowbit(int x){
return x&(-x);
}
int ask(int x,int y){
int ans=0;
while(x){
ans+=query(rt[x],1,y,1,n+2);
x-=lowbit(x);
}
return ans;
}
void add(int x,int y,int p){
while(x<=n){
change(rt[x],y,1,n+2,p);
x+=lowbit(x);
}
}
struct no{
int ls,rs,sum,l,r;
#define tls(x) t2[x].ls
#define trs(x) t2[x].rs
#define ts(x) t2[x].sum
#define tl(x) t2[x].l
#define tr(x) t2[x].r
}t2[N<<2];
void build(int &x,int l,int r){
x=++num;tl(x)=l;tr(x)=r;
if(l==r){ts(x)=sta[l];return;}
int mid=(l+r)>>1;
build(tls(x),l,mid);build(trs(x),mid+1,r);
ts(x)=ts(tls(x))+ts(trs(x));
}
void ct(int x,int p){
if(tl(x)==tr(x)) {ts(x)=sta[tl(x)];return;}
int mid=(tl(x)+tr(x))>>1;
if(p<=mid) ct(tls(x),p);
else ct(trs(x),p);
ts(x)=ts(tls(x))+ts(trs(x));
}
int qt(int x,int l,int r){
if(tl(x)>=l && tr(x)<=r) return ts(x);
int mid=(tl(x)+tr(x))>>1;int ans=0;
if(l<=mid) ans+=qt(tls(x),l,r);
if(r>mid) ans+=qt(trs(x),l,r);
return ans;
}
int findr(int x){
if(x==n) return n+1;
if(qt(1,x+1,x+1)==0) return x+1;
int l=x+1,r=n;
while(l<r){ int mid=(l+r+1)>>1;
if(qt(1,x+1,mid)==mid-x){
l=mid;
}
else r=mid-1;
}
return l+1;
}
int findl(int x){
if(x==1) return 1;
if(qt(1,x-1,x-1)==0){
return x;
}
int l=1,r=x-1;
while(l<r){
int mid=(l+r)>>1;
if(qt(1,mid,x-1)==x-1-mid+1) r=mid;
else l=mid+1;
}
return l;
}
void opti(int l,int r,int ll,int rr,int p){
add(l,r,p);add(ll+1,r,-p);add(l,rr+1,-p);add(ll+1,rr+1,p);
}
int main(){
n=read();q=read();int l,r;char ch;string s;
for(int i=1;i<=n;i++){cin>>ch;sta[i]=ch-'0';}
build(l,1,n);int st=0;
for(int i=1;i<=n;i++){
if(sta[i]==1 && sta[i-1]==0) st=i;
if(sta[i]==1 && sta[i+1]==0){
opti(st,st,i+1,i+1,q);
}
}
for(int i=1;i<=q;i++){
cin>>s;
if(s=="query"){
l=read();r=read();if(l==r){cout<<i<<endl;continue;}
int ans=ask(l,r);
if(qt(1,l,r-1)==(r-1-l+1)) ans+=i-q;
cout<<ans<<endl;
}
else{
l=read();
int ll=findl(l);
int rr=findr(l);
if(sta[l]==0)opti(ll,l+1,l,rr,q-i);
else opti(ll,l+1,l,rr,i-q);
sta[l]^=1;ct(1,l); }
}
}

P5445 [APIO2019] 路灯 题解的更多相关文章

  1. P5445 [APIO2019]路灯(树套树)

    P5445 [APIO2019]路灯 转化为平面上的坐标(x,y),set维护连续区间. 用树套树维护矩阵加法,单点查询. 注意维护矩阵差分的时候, $(x,y,v)$是对$(x,y)(n+1,n+1 ...

  2. P5445 [APIO2019]路灯

    传送门· 对于询问 $(a,b)$ ,感觉一维很不好维护,考虑把询问看成平面上的一个点,坐标为 $(a,b)$ 每个坐标 $(x,y)$ 的值表示到当前 $x$ 和 $y$ 联通的时间和 考虑一个修改 ...

  3. APIO2019简要题解

    Luogu P5444 [APIO2019]奇怪装置 看到这种题,我们肯定会想到\((x,y)\)一定有循环 我们要找到循环节的长度 推一下发现\(x\)的循环节长为\(\frac{AB}{B+1}\ ...

  4. 【LOJ#3146】[APIO2019]路灯(树套树)

    [LOJ#3146][APIO2019]路灯(树套树) 题面 LOJ 题解 考场上因为\(\text{bridge}\)某个\(\text{subtask}\)没有判\(n=1\)的情况导致我卡了\( ...

  5. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  6. 题解-APIO2019路灯

    problem \(\mathtt {loj-3146}\) 题意概要:一条直线上有 \(n+1\) 个点和 \(n\) 条道路,每条道路连通相邻两个点.在 \(q\) 个时刻内,每个时刻有如下两种操 ...

  7. 洛谷P1220 关路灯 题解 区间DP

    题目链接:https://www.luogu.com.cn/problem/P1220 本题涉及算法:区间DP. 我们一开始要做一些初始化操作,令: \(p[i]\) 表示第i个路灯的位置: \(w[ ...

  8. 洛谷P1220关路灯题解

    题目 此题是一个状态转移方程还算比较多的一个区间DP,这个题也能启示我们如果某个状态不能够很好地解决问题,那么不妨试试再加一维,而且如果转移顺序不确定的话,可以试试记忆化搜索,说不定就可以比较容易的写 ...

  9. LOJ3146 APIO2019路灯(cdq分治+树状数组)

    每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...

  10. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

随机推荐

  1. 项目完成小结:使用Blazor和gRPC开发大模型客户端

    前言 先介绍下这个项目. 最近我一直在探索大语言模型,根据不同场景训练了好几个模型,为了让用户测试使用,需要开发前端. 这时候,用 Gradio 搭建的前端是不太够的,虽说 GitHub 上也有一堆开 ...

  2. Node: Module not found: Can't resolve 'xlsx'

    报错信息 解决方案 npm install xlsx --save 参考链接 https://github.com/securedeveloper/react-data-export/issues/8 ...

  3. Django: AttributeError: 'str' object has no attribute 'decode'

    Django安装Mysql驱动 pip install PyMySQL 在Django的工程同名子目录的__init__.py文件中添加如下语句 from pymysql import install ...

  4. zabbix6.4 邮件告警配置

    1.注意事项 QQ邮箱不支持zabbix6以上邮件配置,报拒绝登录 建议使用163.com网易邮箱地址 2.添加媒介 创建媒介类型-> 3.添加用户 一般情况下,无需创建用户,编辑admin即可 ...

  5. 优化nginx参数(基本通用参数)

    全局域配置参数 worker_processes auto; worker_cpu_affinity auto; worker_rlimit_nofile 65530; 前两个参数用于开启nginx多 ...

  6. 十年磨一剑的华为云GES,高明在哪

    本文分享自华为云社区<华为云GES:十年磨一剑,打造业界一流的云原生分布式图数据库>,作者:GES图引擎服务小图 . 1.浅谈云原生图数据库 图数据库(graph database)是一个 ...

  7. Linux查看磁盘空间,文件系统、挂载

    Linux磁盘空间,文件系统.挂载 概述 在使用以下命令查看磁盘使用情况时 df -h du -sh 目标路径 作为初级开发者,Linux入门级选手,可能不禁要问Linux系统的文件系统跟window ...

  8. 《SQL与数据库基础》22. 分库分表(二)

    目录 分库分表(二) MyCat分片规则 范围分片 取模分片 一致性hash分片 枚举分片 应用指定算法 固定分片hash算法 字符串hash解析 按天分片 自然月分片 MyCat原理 MyCat管理 ...

  9. React Native实现Toast轻提示和loading

    React Native 封装Toast 前言 使用react native的小伙伴都知道,官方并未提供轻提示组件,只提供了ToastAndroid API,顾名思义,只能再安卓环境下使用,对于ios ...

  10. 如何通过API接口获取淘宝的商品评论

    在淘宝网上购买产品时,人们通常会查看其他客户留下的评价和评论.这些评价和评论对于购买决策非常有帮助,因为它们提供了其他客户的观点和建议.通过使用淘宝API接口,可以轻松地获取淘宝上任何商品的评论. 以 ...