Hanoi T note
hanoi(n,x,y,z)
{
hanoi(n-1,x,z,y);//n-1 from x to y
move(x,z);//x->z
hanoi(n-1,y,x,z);//n-1 from y to z
}
hanoi(n-1,x,z,y)
{
hanoi(n-2,x,y,z);//n-2 from x to z
move(x,y);//n-1 from x to y
hanoi(n-2,z,x,y);//n-2 from z to y
}
the step move(x,y) is what you must do to realize hanoi(n-2,x,y,z),at last ,the last step will meet the first step that you can implement easily,this is the deepest I can comprehend
//11072013 add
对hanoi T的印象从大二接触C语言开始
其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n – 1(有兴趣的可以自己证明试试看)。后来一位美国学者发现一种出人//摘自百度
#include <stdio.h>
#define N 2 //N disks on original pillar void hanoi(char src, char mid, char dst, int n)
{
if (n == 1)
{
printf("Move disk %d from %c to %c\n", n, src, dst);
}
else {
hanoi(src, dst, mid, n - 1);
printf("Move disk %d from %c to %c\n", n, src, dst);
hanoi(mid, src, dst, n - 1);
}
} int main(void)
{
hanoi('A', 'B', 'C', N);
return 0;
}
借鉴了其他人的思路,总算稍微理解了上述算法的实现,整理步骤要点
the fact is that wo don't konw how to do but konw wo must do,and push to opration to the stack memory until we move the topest disk to Z
a)step befor moving n to Z,the case is 1 to n-1 are on Y,the mothed is move n to Z,push the opration//the last opration
b)the last second situation is 1 to n-2 are on X,the mothed is move n-1 to Z,push the opration//second last opration
d)it is ease to see the first step is move n-(n-1) to X or Y
a and b is what we must do,and we have no other choices,but what has hanppend bettwen b and c,the stack has store all the oprations wo must do until c
assume the function can move 1 to n-1 to X or Y, so it can move 1 to n-2 to X or Y,and so on n-(n-1) to X or Y,it is easy to move n-(n-1) to X or Y
the reverse order you or the functon you build may implement,
e)n-1 disks on Y,put n on Z//after that,you can omit n on Z
f)n-2 disks on X,n-1 on Y//put the n-1 on Z,the question return to a,so a and b is the whole task need to resolve
****the last situation is 2 disks on X or Y
the whole steps is like ,if 1 OK,then 2OK;if 2 OK,then 3 OK
个人感悟:1,有时候踢皮球也是一种办法,此处是往上踢,有点默认路由的味道,没有别的选择
2,当你身处多级环境中,而且视野范围有限的情况下,只能虚构方法,即使不知道方法是怎么实现
3,the original case only permit taking one disk once,but it does't conflact with the step e and f,e and f is the situation we need implement but the mothed we use.The mothed is very simple,anyone can see directly,we image the situation first ,here the mothed is not the point
4,let the stack store the opration but not your head
5,用递归证明可以实现,用反证证明只有一种方式
Hanoi T note的更多相关文章
- Codeforces777E. Hanoi Factory 2017-05-04 18:10 42人阅读 评论(0) 收藏
E. Hanoi Factory time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- Python学习札记(十四) Function4 递归函数 & Hanoi Tower
reference:递归函数 Note 1.在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. eg.计算阶乘: #!/usr/bin/env python3 def ...
- codeforces-777E Hanoi Factory (栈+贪心)
题目传送门 题目大意: 现在一共有N个零件,如果存在:bi>=bj&&bj>ai的两个零件i,j,那么此时我们就可以将零件j放在零件i上.我们现在要组成一个大零件,使得高度 ...
- poj 1920 Towers of Hanoi
Towers of Hanoi Time Limit: 3000MS Memory Limit: 16000K Total Submissions: 2213 Accepted: 986 Ca ...
- zoj 2954 Hanoi Tower
Hanoi Tower Time Limit: 2 Seconds Memory Limit: 65536 KB You all must know the puzzle named "Th ...
- Codeforces 777E:Hanoi Factory(贪心)
Of course you have heard the famous task about Hanoi Towers, but did you know that there is a specia ...
- 三星Note 7停产,原来是吃了流程的亏
三星Note 7发售两个月即成为全球噩梦,从首炸到传言停产仅仅47天.所谓"屋漏偏逢连天雨",相比华为.小米等品牌对其全球市场的挤压.侵蚀,Galaxy Note 7爆炸事件这场连 ...
- 《Note --- Unreal --- MemPro (CONTINUE... ...)》
Mem pro 是一个主要集成内存泄露检测的工具,其具有自身的源码和GUI,在GUI中利用"Launch" button进行加载自己待检测的application,目前支持的平台为 ...
- 《Note --- Unreal 4 --- Sample analyze --- StrategyGame(continue...)》
---------------------------------------------------------------------------------------------------- ...
随机推荐
- Smart ECM数据发布假数据测试工作。
1. ScriptBom.java//文件方法供接口调用 代码: public String setBomEcnHistoryDataByXML(String strView){//传入arg文件名 ...
- 数据库中MyISAM与InnoDB区别
数据库中MyISAM与InnoDB区别 首页 » DIY技术区 » 数据库中MyISAM与InnoDB区别 09:57:40 MyISAM:这个是默认类型,它是基于传统的ISAM类型,ISAM是I ...
- PHP生成随机密码的4种方法及性能对比
PHP生成随机密码的4种方法及性能对比 http://www.php100.com/html/it/biancheng/2015/0422/8926.html 来源:露兜博客 时间:2015-04 ...
- javascript中的eval()函数应用以及要点
eval是干嘛用的?eval是直接将一段字符串作为参数,交给JS引擎预编译器进行动态分析并执行代码.如下: //调试台输出,你可以理解为console.log,再不理解就理解成alert也没事 var ...
- bug 发表文章不显示图片
bug 描述: 现象是我们这不能发布图片, 测试说患教方向是可以正常发布图片的(还是要感激测试,正是他们鞭策我们不断挑战困难,解决之,从而提高自己姿势水平). 图片没上传上去, 服务端协助查找发现没调 ...
- word size
Computer Systems A Programmer's Perspective Second Edition Running throughout the system is a collec ...
- volatile in thread
public class TestCalc { public static void main(String[] args) { class StoppableThread extends Threa ...
- nrf51822-主从通信分析2
解决第三个问题:如何使能从机上的特征值的 notify功能,使其能通过notify方式发送数据 使能从机的notify功能是通过写0x0001到从机的那个具有notify功能的特征值的CCCD描述 ...
- Apache的HBase与cdh的sqoop集成(不建议不同版本之间的集成)
1.修改sqoop的配资文件 2.从mysql导入到hbase(import) bin/sqoop import \ --connect jdbc:mysql://linux-hadoop3.ibei ...
- Bundle文件的创建和使用(一)
经常会出现某个需求:将自己的模块或者开放类,封装成静态库给其他人提供方便的调用. 但是当你的模块中需要大量使用xib,图片,音频或者其他资源文件时,无法添加至静态库.这个时候就需要将一些资源文件封装至 ...