深度学习:卷积神经网络(convolution neural network)
(一)卷积神经网络
卷积神经网络最早是由Lecun在1998年提出的。
卷积神经网络通畅使用的三个基本概念为:
1.局部视觉域;
2.权值共享;
3.池化操作。
在卷积神经网络中,局部接受域表明输入图像与隐藏神经元的连接方式。在图像处理操作中采用局部视觉域的原因是:图像中的像素并不是孤立存在的,每一个像素与它周围的像素都有着相互关联,而并不是与整幅图像的像素点相关,因此采用局部视觉接受域可以类似图像的此种特性。
另外,在图像数据中存在大量的冗余数据,因此在图像处理过程中需要对这些冗余数据进行处理。因此在卷积神经网络中,采用pooling的方法来对图像中的冗余数据进行处理,得到描述性更强的数据特性。pooling方法常用的有maxpooling和meanpooling两种方式。
权值共享:使用卷积核构建像素之间关联时,每一个隐含神经元在使用卷积核进行操作时的权重是共享的。在对图像进行卷积操作室,并不需要对每一个卷积核新建立参数,滑动过程中的卷积核参数都是共享的。这样就意味着第一层隐含神经元所检测到完全一样的特征,只不过是输入图像的不同位置。为了明白这个过程为什么有效果,我们假定给定的权重和偏移量学习到的特征为一个局部视觉域的垂直检测特征,那么这个特征是可以使用到其它应用中的。因此,我们一般把第一步通过隐藏神经元得到的数据叫做feature map。我们把这个过程中学习到的权重叫做shared weight,把该过程学习到的bias成为shared bias。而将shared weight同shared bias结合起来就是一个卷积核或者是滤波器(a filter or kernel)。而且在实际应用中,经常选取多个kernel,用于描述输入在不同kernel下学习到的特征。
在经过卷积层之后,学习到的特征类似于如下的特征:

这些特征的数量为20,那么对应的filter/kernel的数量也为20。在学习到的特征描述中,白色像素块表示权值小,特征图对输入像素的像素响应小,而黑色像素块的权值大,特征图对输入像素的响应大。每一个特征图为5*5,对应的5*5的权值。从这些特征图中可以发现,通过卷积操作真正的学到一些相关的空间结构,但是我们并不知道这些特征检测子学习到什么。
权值共享的好处就是该操作大大降低了网络参数的个数。
卷积神经网络层结构的理解:
卷积层
convolution层一般紧接着pooling层,pooling层的操作如下图所示:

我们可以认为max-pooling是一种在图像区域中寻找是否发现特征位置的操作。在发现图像特征位置后,可以丢弃特征的位置信息。
pooling层可以降低在接下来操作过程中的参数数量。但是max-pooling并不是唯一的pooling方法,L2方法也是一种常用pooling方式,L2pooling的思路是对局部区域中的像素值采用L2规则化计算。同时存在其他pooling方法,具体使用过程根据应用确定。
参考资料:
VGG Convolutional Neural Networks Practical
Deep learning
CS231n Convolutional Neural Networks for Visual Recognition
(二)深度学习基础知识总结
batchsize在深度学习算法中的作用:
在SGD算法里面,梯度是minibatch的平均值。Batchsize越大,噪声梯度越小。而噪声是用来使得收敛值逃离局部最小值的扰动。这就是SGD算法比BGD(batch gradient descent)好的地方,minibatch大小选择并没有一个确定的规矩,这是根据网络和数据来决定的,而minibatch size的选择是通过不断尝试获取最优size。Batchsize越小,更新值的噪声也就越大。因此,降低batchsize时需要降低lr值,通过更多的迭代次数来获取更好训练效果。(原帖链接)
在使用caffe训练的过程中,需要考虑到夏卡的显存问题,因此在调整训练参数时,修改validation.prototxt中的batch_size值同样可以降低对显存的需求。在caffe中base_lr和batch_size是相关联的,理论上当时用X降低batchsize时(128->64),需要对base_lr应该乘以sqrt(x)。应该修改的值为stepsize和max_iter,batchsize除以x,那么这两个值应该乘以x,同时应该注意网络的loss,如果在 10k-20k 迭代之后loss > 6.9 (which is basically random guessing),那么网络在迭代过程中并没有学习到东西。(原帖链接1,原帖链接2)
深度学习:卷积神经网络(convolution neural network)的更多相关文章
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...
- 深度学习FPGA实现基础知识10(Deep Learning(深度学习)卷积神经网络(Convolutional Neural Network,CNN))
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份 ...
- 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...
- 卷积神经网络(Convolutional Neural Network, CNN)简析
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID ...
- Convolution Neural Network (CNN) 原理与实现
本文结合Deep learning的一个应用,Convolution Neural Network 进行一些基本应用,参考Lecun的Document 0.1进行部分拓展,与结果展示(in pytho ...
- 递归神经网络(Recursive Neural Network, RNN)
信息往往还存在着诸如树结构.图结构等更复杂的结构.这就需要用到递归神经网络 (Recursive Neural Network, RNN),巧合的是递归神经网络的缩写和循环神经网络一样,也是RNN,递 ...
- Deeplearning - Overview of Convolution Neural Network
Finally pass all the Deeplearning.ai courses in March! I highly recommend it! If you already know th ...
- 针对深度学习(神经网络)的AI框架调研
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU). ...
随机推荐
- 2_C语言中的数据类型 (七)类型限定
1.1 类型限定 1.1.1 const const是代表一个不能改变值的常量 1.1.2 volatile 代表变量是一个可能被CPU指令之外的地方改 ...
- 微信小程序——手把手教你写一个微信小程序
前言 微信小程序年前的跳一跳确实是火了一把,然后呢一直没有时间去实践项目,一直想搞但是工作上不需要所以,嗯嗯嗯嗯嗯emmmmm..... 需求 小程序语音识别,全景图片观看,登录授权,获取个人基本信息 ...
- selenium无法正常运行 Chrome浏览器,cannot find Chrome binary的问题
有些同学在运行selenium-chrome时会遇到这个问题, System.setProperty("webdriver.chrome.driver","files/c ...
- 一步步实现一个基本的缓存模块·续, 添加Memcached调用实现
jusfr 原创,转载请注明来自博客园. 在之前的实现中,我们初步实现了一个缓存模块:包含一个基于Http请求的缓存实现,一个基于HttpRuntime.Cache进程级的缓存实现,但观察代码,会发现 ...
- 虚拟机下安装cad2006和南方cass7.0
本人电脑是win10系统,装了一个cad2014,cad2014没有与之匹配的cass版本,但cad2014也有用途,于是上网找两个cad版本都安装的教程,发现一个比较好的办法就是安装虚拟机,在虚拟机 ...
- Altium软件中Unknowpin的详细解决办法
1.Altium软件中Unknowpin第一种原因:PCB封装缺失遗漏,直接加入对应的封装即可.点击箭头指示处的Add,接着点击OK之后,再点击图中所示处Browse...选择封装库的封装即可. 2. ...
- 引用“kernel32”读写ini配置文件
引用"kernel32"读写ini配置文件 unity ini kernel32 配置文件 引用"kernel32"读写ini配置文件 OverView ke ...
- 高可用OpenStack(Queen版)集群-14.Openstack集成Ceph准备
参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...
- 使用Zabbix的SNMP trap监控类型监控设备的一个例子
本文以监控绿盟设备为例. 1.登录被监控的设备的管理系统,配置snmptrap地址指向zabbix服务器或代理服务器. snmptrap地址也叫陷阱. 2.验证是否能在zabbix服务器或代理服务器上 ...
- Tree - AdaBoost with sklearn source code
In the previous post we addressed some issue of decision tree, including instability, lack of smooth ...