画一个顶点为偶数的封闭的二维图,当然。这个图能够自交,给出画的过程中的一些轨迹点。求出这个图把二次元分成了几部分,比如三角形把二次元分成了两部分。

这个的话,有图中顶点数+部分数-棱数=2的定律,这是核心思想。也就是所谓的欧拉定律拓扑版,好吧,事实上细致想想也是可以想出这个规律来的。

做出这题纯属意外,因为给的点的坐标全是用整数表示,为了不用考虑精度问题,一開始。我就想仅仅用这些点。就是说不再算出其他交点之类的,就把答案算出,



由于当前轨迹与之前轨迹无非三种情况:规范与不规范相交,不相交



不相交当然就不用管了,相交的话,考虑两种情况下的顶点、棱的数量变化



可是不知道是不是题意有些细节没理解到,还是有些特殊的图的情况没考虑到。用这样的思路尽管代码比較精炼。可是一直wa



后来索性干脆把全部的顶点用行列式求出,然后再求棱。略微想想能够知道,棱的数目是在轨迹数目的基础上加上在轨迹中间,即在轨迹上。不在轨迹两点的交点数目



这里就须要通过叉积推断点是否在轨迹中间。因为题中没有给出精度要求……假设不给一个精度,而直接用叉积为0推断点是否在轨迹所在的直线上的话,会wa



由于直接用0。相当于。精度就是double的精度,也就是1e-15,所以后来改成了1e-9然后就过了。



须要注意的是,在杭电上也有相同的题,但明显杭电的oj比UVA的渣,杭电的g++比c++的精度运算损失少,所以在杭电上交用这样的不太好的方法写的代码,须要用g++交才干



过。

我的代码:

#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const double inf=1e4,eps=1e-9;
struct dot
{
double x,y;
dot(){}
dot(double a,double b){x=a;y=b;}
dot operator -(dot a){return dot(x-a.x,y-a.y);}
friend bool operator <(dot a,dot b){return a.x!=b.x?a.x<b.x:a.y<b.y;}
bool operator ==(dot a){return x==a.x&&y==a.y;}
bool operator !=(dot a){return x!=a.x||y!=a.y;}
double operator *(dot a){return x*a.y-y*a.x;}
double dis(dot a){return sqrt(pow(x-a.x,2)+pow(y-a.y,2));}
};
bool isdil(dot a,dot b,dot c)
{
return a.x<=max(b.x,c.x)&&
a.y<=max(b.y,c.y)&&
min(b.x,c.x)<=a.x&&
min(b.y,c.y)<=a.y&&
a!=b&&a!=c;
}
bool isdbl(dot a,dot b,dot c){return fabs((a-c)*(b-c))<eps&&isdil(a,b,c);}
dot cross(dot a,dot b,dot c,dot d)
{
double e,f,g,h,i,j,k,l,m;
e=b.y-a.y;f=a.x-b.x;g=a.x*b.y-a.y*b.x;
h=d.y-c.y;i=c.x-d.x;j=c.x*d.y-c.y*d.x;
k=dot(e,h)*dot(f,i);
if(k==0)
return dot(inf,inf);
l=dot(g,j)*dot(f,i);
m=dot(e,h)*dot(g,j);
dot t=dot(l/k,m/k);
return isdil(t,a,b)&&isdil(t,c,d)?t:dot(inf,inf);
}
int main()
{
dot a[310],b[30000],t;
int i,n,j,k,ans,T=0;
while(cin>>n&&n)
{
for(i=0;i<n;i++)
{
cin>>a[i].x>>a[i].y;
b[i]=a[i];
}
k=n;
for(i=1;i<n;i++)
for(j=i+2;j<n;j++)
{
t=cross(a[i-1],a[i],b[j-1],b[j]);
if(t.x!=inf)
b[k++]=t;
}
sort(b,b+k);
k=unique(b,b+k)-b;
ans=1+n-k;
for(j=0;j<k;j++)
for(i=1;i<n;i++)
if(isdbl(b[j],a[i-1],a[i]))
ans++;
printf("Case %d: There are %d pieces.\n",++T,ans);
}
}

原题:

Description

Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The problem in that story was - let me remind you - to draw a
graph on a paper without lifting your pen, and finally return to the original position. Euler proved that you could do this if and only if the (planar) graph you created has the following two properties: (1) The graph is connected; and (2) Every vertex in
the graph has even degree.

Joey's Euler machine works exactly like this. The device consists of a pencil touching the paper, and a control center issuing a sequence of instructions. The paper can be viewed as the infinite two-dimensional plane; that means you do not need to worry about
if the pencil will ever go off the boundary.

In the beginning, the Euler machine will issue an instruction of the form
(X0, Y0) which moves the pencil to some starting position(X0,Y0). Each subsequent instruction is also of the form(X',Y'), which means to move the
pencil from the previous position to the new position(X',Y'), thus draw a line segment on the paper. You can be sure that the new position is different from the previous position for each instruction. At last, the
Euler machine will always issue an instruction that move the pencil back to the starting position(X0,
Y0). In addition, the Euler machine will definitely not draw any lines that overlay other lines already drawn. However, the lines may intersect.

After all the instructions are issued, there will be a nice picture on Joey's paper. You see, since the pencil is never lifted from the paper, the picture can be viewed as an Euler circuit.

Your job is to count how many pieces (connected areas) are created on the paper by those lines drawn by Euler.

Input

There are no more than 25 test cases. Ease case starts with a line containing an integerN4,
which is the number of instructions in the test case. The followingN pairs of integers give the instructions and appear on a single line separated by single spaces. The first pair is the first instruction that gives the coordinates
of the starting position. You may assume there are no more than 300 instructions in each test case, and all the integer coordinates are in the range (-300, 300). The input is terminated whenN is 0.

Output

For each test case there will be one output line in the format

Case x: There are w pieces.,

where x is the serial number starting from 1.

Note: The figures below illustrate the two sample input cases.

Sample Input

5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
0

Sample Output

Case 1: There are 2 pieces.
Case 2: There are 5 pieces.

UVA LIVE-3263 - That Nice Euler Circuit的更多相关文章

  1. UVALive - 3263 That Nice Euler Circuit (几何)

    UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址:  UVALive - 3263 That Nice Euler Circuit 题意:  给 ...

  2. UVALi 3263 That Nice Euler Circuit(几何)

    That Nice Euler Circuit [题目链接]That Nice Euler Circuit [题目类型]几何 &题解: 蓝书P260 要用欧拉定理:V+F=E+2 V是顶点数; ...

  3. LA 3263 That Nice Euler Circuit(欧拉定理)

    That Nice Euler Circuit Little Joey invented a scrabble machine that he called Euler, after the grea ...

  4. 简单几何(求划分区域) LA 3263 That Nice Euler Circuit

    题目传送门 题意:一笔画,问该图形将平面分成多少个区域 分析:训练指南P260,欧拉定理:平面图定点数V,边数E,面数F,则V + F - E =  2.那么找出新增的点和边就可以了.用到了判断线段相 ...

  5. uvalive 3263 That Nice Euler Circuit

    题意:平面上有一个包含n个端点的一笔画,第n个端点总是和第一个端点重合,因此团史一条闭合曲线.组成一笔画的线段可以相交,但是不会部分重叠.求这些线段将平面分成多少部分(包括封闭区域和无限大区域). 分 ...

  6. UVAlive 3263 That Nice Euler Circuit(欧拉定理)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=21363 [思路] 欧拉定理:V+F-E=2.则F=E-V+2. 其 ...

  7. UVALive 3263: That Nice Euler Circuit (计算几何)

    题目链接 lrj训练指南 P260 //==================================================================== // 此题只需要考虑线 ...

  8. UVa 10735 - Euler Circuit(最大流 + 欧拉回路)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVa 10735 (混合图的欧拉回路) Euler Circuit

    题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话, ...

随机推荐

  1. 使用Netty4实现基本的消息分发

    示例工程代码 可从附件下载 具体的说明和用法在后面介绍 需求与目的 一个游戏服务端需要处理各种业务逻辑,每一种业务逻辑都对应着一个请求消息和一个响应消息.那么服务端需要把这些不同的消息自动分发到对应的 ...

  2. 在SQL2008和2012里面怎么让显示全部行和编辑 全部而不是200和1000

    在sql server2008里面,可能微软考虑到数据量比较大,如果直接返回所有行,可能造成耗费时间过多.所有默认为"编辑前200行"和"返回前1000行".这 ...

  3. 微信小程序 跳一跳 外挂 C# winform源码

    昨天微信更新了,出现了一个小游戏“跳一跳”,玩了一下 赶紧还蛮有意思的 但纯粹是拼手感的,玩了好久,终于搞了个135分拿了个第一名,没想到过一会就被朋友刷下去了,最高的也就200来分把,于是就想着要是 ...

  4. CCF CSP 201512-2 消除类游戏

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201512-2 消除类游戏 问题描述 消除类游戏是深受大众欢迎的一种游戏,游戏在一个包含有n行 ...

  5. Storm(一)Storm的简介与相关概念

    一.Storm的简介 官网地址:http://storm.apache.org/ Storm是一个免费开源.分布式.高容错的实时计算系统.Storm令持续不断的流计算变得容易,弥补了Hadoop批处理 ...

  6. abtest分流随机链接方法(javascript)

    ¶¹¸¯¸ÉËêµÄ·¨¹úµçÊÓ¸²¸Ç --> 代码如下 <!DOCTYPE HTML> <html> <head> <script type=& ...

  7. HDU - 4465 期望 + 取log优化

    思路:这个求期望的公式很容易得到,但是在算的时候我们会遇到一个问题,就是组合数太大了根本存不下, 这时候就可以在计算的时候都取log,最后复原...  以前没遇到过.. #include<bit ...

  8. Python爬虫个人记录(四)利用Python在豆瓣上写一篇日记

    涉及关键词:requests库 requests.post方法 cookies登陆 version 1.5(附录):使用post方法登陆豆瓣,成功! 缺点:无法获得登陆成功后的cookie,要使用js ...

  9. 《Android源码设计模式》--工厂方法模式

    No1: 对于一个应用程序来说,其真正的入口是在ActivityThread类中,ActivityThread中含有我们熟悉的main方法.ActivityThread是一个final类,不能被继承. ...

  10. C# 中使用 Task 实现提前加载

    介绍一种/两种可以提前做点什么事情的方法. 场景 在UI线程中执行耗时操作,如读取大文件,为了不造成UI卡顿,常采用异步加载的方式,即 async/await . 通常的写法是这样的: private ...