Netty源码分析第七章: 编码器和写数据

概述:

上一小章我们介绍了解码器, 这一章我们介绍编码器

其实编码器和解码器比较类似, 编码器也是一个handler, 并且属于outbounfHandle, 就是将准备发出去的数据进行拦截, 拦截之后进行相应的处理之后再次进发送处理, 如果理解了解码器, 那么编码器的相关内容理解起来也比较容易

第一节: writeAndFlush的事件传播

我们之前在学习pipeline的时候, 讲解了write事件的传播过程, 但在实际使用的时候, 我们通常不会调用channel的write方法, 因为该方法只会写入到发送数据的缓存中, 并不会直接写入channel中, 如果想写入到channel中, 还需要调用flush方法

实际使用过程中, 我们用的更多的是writeAndFlush方法, 这方法既能将数据写到发送缓存中, 也能刷新到channel中

我们看一个最简单的使用的场景:

public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
ctx.channel().writeAndFlush("test data");
}

学过netty的同学们对此肯定不陌生, 通过这种方式, 可以将数据发送到channel中, 对方可以收到响应

我们跟到writeAndFlush方法中, 首先会走到AbstractChannel的writeAndFlush:

public ChannelFuture writeAndFlush(Object msg) {
return pipeline.writeAndFlush(msg);
}

继续跟到DefualtChannelPipeline中的writeAndFlush方法中:

public final ChannelFuture writeAndFlush(Object msg) {
return tail.writeAndFlush(msg);
}

这里我们看到, writeAndFlush是从tail节点进行传播, 有关事件传播, 我们再pipeline中进行过剖析, 相信这个不会陌生

继续跟, 会跟到AbstractChannelHandlerContext中的writeAndFlush方法:

public ChannelFuture writeAndFlush(Object msg) {
return writeAndFlush(msg, newPromise());
}

继续跟:

public ChannelFuture writeAndFlush(Object msg, ChannelPromise promise) {
if (msg == null) {
throw new NullPointerException("msg");
}
if (!validatePromise(promise, true)) {
ReferenceCountUtil.release(msg);
// cancelled
return promise;
}
write(msg, true, promise);
return promise;
}

继续跟write方法:

private void write(Object msg, boolean flush, ChannelPromise promise) {
//findContextOutbound()寻找前一个outbound节点
//最后到head节点结束
AbstractChannelHandlerContext next = findContextOutbound();
final Object m = pipeline.touch(msg, next);
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
if (flush) {
next.invokeWriteAndFlush(m, promise);
} else {
//没有调flush
next.invokeWrite(m, promise);
}
} else {
AbstractWriteTask task;
if (flush) {
task = WriteAndFlushTask.newInstance(next, m, promise);
} else {
task = WriteTask.newInstance(next, m, promise);
}
safeExecute(executor, task, promise, m);
}
}

这里的逻辑我们也不陌生, 找到下一个节点, 因为writeAndFlush是从tail节点开始的, 并且是outBound的事件, 所以这里会找到tail节点的上一个outBoundHandler, 有可能是编码器, 也有可能是我们业务处理的handler

if (executor.inEventLoop()) 判断是否是eventLoop线程, 如果不是, 则封装成task通过nioEventLoop异步执行, 我们这里先按照是eventLoop线程分析

首先, 这里通过flush判断是否调用了flush, 这里显然是true, 因为我们调用的方法是writeAndFlush

我们跟到invokeWriteAndFlush中:

private void invokeWriteAndFlush(Object msg, ChannelPromise promise) {
if (invokeHandler()) {
//写入
invokeWrite0(msg, promise);
//刷新
invokeFlush0();
} else {
writeAndFlush(msg, promise);
}
}

这里就真相大白了, 其实在writeAndFlush中, 首先调用write, write完成之后再调用flush方法进行的刷新

首先跟到invokeWrite0方法中:

private void invokeWrite0(Object msg, ChannelPromise promise) {
try {
//调用当前handler的wirte()方法
((ChannelOutboundHandler) handler()).write(this, msg, promise);
} catch (Throwable t) {
notifyOutboundHandlerException(t, promise);
}
}

该方法我们在pipeline中已经进行过分析, 就是调用当前handler的write方法, 如果当前handler中write方法是继续往下传播, 在会继续传播写事件, 直到传播到head节点, 最后会走到HeadContext的write方法中

跟到HeadContext的write方法中:

public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
unsafe.write(msg, promise);
}

这里通过当前channel的unsafe对象对将当前消息写到缓存中, 写入的过程, 我们之后的小节进行分析

回到到invokeWriteAndFlush方法中:

private void invokeWriteAndFlush(Object msg, ChannelPromise promise) {
if (invokeHandler()) {
//写入
invokeWrite0(msg, promise);
//刷新
invokeFlush0();
} else {
writeAndFlush(msg, promise);
}
}

我们再看invokeFlush0方法:

private void invokeFlush0() {
try {
((ChannelOutboundHandler) handler()).flush(this);
} catch (Throwable t) {
notifyHandlerException(t);
}
}

同样, 这里会调用当前handler的flush方法, 如果当前handler的flush方法是继续传播flush事件, 则flush事件会继续往下传播, 直到最后会调用head节点的flush方法, 如果我们熟悉pipeline的话, 对这里的逻辑不会陌生

跟到HeadContext的flush方法中:

public void flush(ChannelHandlerContext ctx) throws Exception {
unsafe.flush();
}

这里同样, 会通过当前channel的unsafe对象通过调用flush方法将缓存的数据刷新到channel中, 有关刷新的逻辑, 我们会在以后的小节进行剖析

以上就是writeAndFlush的相关逻辑, 整体上比较简单, 熟悉pipeline的同学应该很容易理解

上一节: 分隔符解码器

下一节: MessageToByteEncoder

Netty源码分析第7章(编码器和写数据)---->第1节: writeAndFlush的事件传播的更多相关文章

  1. Netty源码分析第7章(编码器和写数据)---->第4节: 刷新buffer队列

    Netty源码分析第七章: 编码器和写数据 第四节: 刷新buffer队列 上一小节学习了writeAndFlush的write方法, 这一小节我们剖析flush方法 通过前面的学习我们知道, flu ...

  2. Netty源码分析第7章(编码器和写数据)---->第5节: Future和Promies

    Netty源码分析第七章: 编码器和写数据 第五节: Future和Promise Netty中的Future, 其实类似于jdk的Future, 用于异步获取执行结果 Promise则相当于一个被观 ...

  3. Netty源码分析第7章(编码器和写数据)---->第2节: MessageToByteEncoder

    Netty源码分析第七章: Netty源码分析 第二节: MessageToByteEncoder 同解码器一样, 编码器中也有一个抽象类叫MessageToByteEncoder, 其中定义了编码器 ...

  4. Netty源码分析第7章(编码器和写数据)---->第3节: 写buffer队列

    Netty源码分析七章: 编码器和写数据 第三节: 写buffer队列 之前的小节我们介绍过, writeAndFlush方法其实最终会调用write和flush方法 write方法最终会传递到hea ...

  5. Netty源码分析第6章(解码器)---->第1节: ByteToMessageDecoder

    Netty源码分析第六章: 解码器 概述: 在我们上一个章节遗留过一个问题, 就是如果Server在读取客户端的数据的时候, 如果一次读取不完整, 就触发channelRead事件, 那么Netty是 ...

  6. Netty源码分析第3章(客户端接入流程)---->第1节: 初始化NioSockectChannelConfig

    Netty源码分析第三章: 客户端接入流程 概述: 之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐进, 带 ...

  7. Netty源码分析第3章(客户端接入流程)---->第2节: 处理接入事件之handle的创建

    Netty源码分析第三章: 客户端接入流程 第二节: 处理接入事件之handle的创建 上一小节我们剖析完成了与channel绑定的ChannelConfig初始化相关的流程, 这一小节继续剖析客户端 ...

  8. Netty源码分析第3章(客户端接入流程)---->第3节: NioSocketChannel的创建

    Netty源码分析第三章: 客户端接入流程 第三节: NioSocketChannel的创建 回到上一小节的read()方法: public void read() { //必须是NioEventLo ...

  9. Netty源码分析第3章(客户端接入流程)---->第4节: NioSocketChannel注册到selector

    Netty源码分析第三章: 客户端接入流程 第四节: NioSocketChannel注册到selector 我们回到最初的NioMessageUnsafe的read()方法: public void ...

随机推荐

  1. python第十六课——外部函数and内部函数

    1.外部函数&内部函数 内部函数: 定义在某个函数的内部,就是内部函数: [注意事项]: 1).内部函数可以随意使用它外部函数中的内容 2).外部函数不能使用内部函数中的内容 3).内部函数不 ...

  2. 如何用代码而非事件触发PBO

    通常我们通过抛出事件触发PBO,但若没有事件发生时,我们其实也可以用代码强制发出命令. 写法如下: CL_GUI_CFW=>SET_NEW_OK_CODE( NEW_CODE = <uco ...

  3. 使用Discuz!自带参数防御CC攻击以及原理

    CC攻击确实是很蛋疼的一种攻击方式,Discuz!的配置文件中已经有了一个自带的减缓CC攻击的参数,在配置文件config.inc.php中: $attackevasive = 0;  // 论坛防御 ...

  4. 一般处理程序中用到session时

    一般处理程序ashx文件使用session 1.先引用System.Web.SessionState这个命名空间, 2.如果是要在HttpHandler中读取Session的内容,就要在实现IHttp ...

  5. centos安装swoole

        编译安装swoole: cd && wget https://github.com/swoole/swoole-src/archive/1.8.6-stable.tar.gz  ...

  6. c++中内存拷贝函数(C++ memcpy)详解

    原型:void*memcpy(void*dest, const void*src,unsigned int count); 功能:由src所指内存区域复制count个字节到dest所指内存区域. 说明 ...

  7. 初识Qt文件下载

    1.新建一个Qt Gui应用,项目名称为http,基类选择为QMainWindow,类名设置为MainWindow. 2.在http.pro文件中的QT  += core gui后添加\ networ ...

  8. LeetCode429. N-ary Tree Level Order Traversal

    题目来源:429. N-ary Tree Level Order Traversal https://leetcode.com/problems/n-ary-tree-level-order-trav ...

  9. 1360: Good Serial Inc.(不知道是什么类型的题)

    1360: Good Serial Inc. Submit Page    Summary    Time Limit: 1 Sec     Memory Limit: 128 Mb     Subm ...

  10. windows内核Api的学习

    windows内核api就是ntoskrnl.exe导出的函数.我们能够跟调用应用层的api一样,调用内核api. 只是内核api须要注意的是.假设函数导出了.而且函数文档化(也就是能够直接在msdn ...