7. 集成学习(Ensemble Learning)Stacking
1. 集成学习(Ensemble Learning)原理
2. 集成学习(Ensemble Learning)Bagging
3. 集成学习(Ensemble Learning)随机森林(Random Forest)
4. 集成学习(Ensemble Learning)Adaboost
5. 集成学习(Ensemble Learning)GBDT
6. 集成学习(Ensemble Learning)算法比较
7. 集成学习(Ensemble Learning)Stacking
1. 前言
到现在为止我们还剩一种集成学习的算法还没有涉及到,那就是Stacking。Stacking是一个与Bagging和Boosting都不一样的算法。它的主要突破点在如何集成之前的所有算法的结果,简单的说就是在弱学习器的基础上再套一个算法。
2. Stacking原理
Stacking是在弱学习器的基础上再套一个算法,用机器学习算法自动去结合之前的弱学习器。
Stacking方法中,我们把个体学习器叫做初级学习器,用于结合的学习器叫做次级学习器,次级学习器用于训练的数据叫做次级训练集。次级训练集是在训练集上用初级学习器得到的。
如下图所示:
数据集为\(D\),样本数量为\(m\),分为\(D_{train}\)和\(D_{test}\)。
- Stacking的初级学习器有\(n\)种。
- 对每一个初级学习器进行以下处理。
- 首先对\(D_{train}\)进行5-fold处理。
- 用\(model_i\)进行5-fold训练,对验证集进行\(Predict\)。
- 同时生成5个\(Predict_{test}\)。
- 最后对输出进行整理。5个验证集的输出组合成次学习器的一个输入特征,5个\(Predict_{test}\)取平均
- 这样就组成了\(m*5\)的维度的次训练集和\(m*5\)维度的测试集,用次级学习器进行再次训练。
3. 总结
Stacking的思想也是非常的简单,但是有时候在机器学习中特征工程处理的好,简单的算法也能发挥强大的作用。
7. 集成学习(Ensemble Learning)Stacking的更多相关文章
- 【Supervised Learning】 集成学习Ensemble Learning & Boosting 算法(python实现)
零. Introduction 1.learn over a subset of data choose the subset uniformally randomly (均匀随机地选择子集) app ...
- 笔记︱集成学习Ensemble Learning与树模型、Bagging 和 Boosting
本杂记摘录自文章<开发 | 为什么说集成学习模型是金融风控新的杀手锏?> 基本内容与分类见上述思维导图. . . 一.机器学习元算法 随机森林:决策树+bagging=随机森林 梯度提升树 ...
- 集成学习中的 stacking 以及python实现
集成学习 Ensemble learning 中文名叫做集成学习,它并不是一个单独的机器学习算法,而是将很多的机器学习算法结合在一起,我们把组成集成学习的算法叫做“个体学习器”.在集成学习器当中,个体 ...
- 集成学习(Ensembling Learning)
集成学习(Ensembling Learning) 标签(空格分隔): 机器学习 Adabost 对于一些弱分类器来说,如何通过组合方法构成一个强分类器.一般的思路是:改变训练数据的概率分布(权值分布 ...
- 集成学习-组合策略与Stacking
集成学习是如何把多个分类器组合在一起的,不同的集成学习有不同的组合策略,本文做个总结. 平均法 对数值型输出,平均法是最常用的策略,解决回归问题. 简单平均法 [h(x)表示基学习器的输出] 加权平均 ...
- 【集成学习】:Stacking原理以及Python代码实现
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好.今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理.并在博文的后面附 ...
- 集成学习ensemble
集成学习里面在不知道g的情况下边学习边融合有两大派:Bagging和Boosting,每一派都有其代表性算法,这里给出一个大纲. 先来说下Bagging和Boosting之间的相同点:都是不知道g,和 ...
- 集成算法——Ensemble learning
目的:让机器学习效果更好,单个不行,群殴啊! Bagging:训练多个分类器取平均 Boosting:从弱学习器开始加强,通过加权来进行训练 (加入一棵树,比原来要强) Stacking:聚合多个分类 ...
- 集成学习(ensemble method)--基于树模型
bagging方法(自举汇聚法 bootstrap aggregating) boosting分类:最流行的是AdaBoost(adaptive boosting) 随机森林(random fores ...
- 集成学习的不二法门bagging、boosting和三大法宝<结合策略>平均法,投票法和学习法(stacking)
单个学习器要么容易欠拟合要么容易过拟合,为了获得泛化性能优良的学习器,可以训练多个个体学习器,通过一定的结合策略,最终形成一个强学习器.这种集成多个个体学习器的方法称为集成学习(ensemble le ...
随机推荐
- 微信多客服插件获取openid
<!doctype html> <html> <head> <meta http-equiv="Content-Type" content ...
- Linux设备驱动Hello World程序介绍
自古以来,学习一门新编程语言的第一步就是写一个打印“hello world”的程序(可以看<hello world 集中营>这个帖子供罗列了300个“hello world”程序例子)在本 ...
- [转]利用Docker构建开发环境
利用Docker构建开发环境 Posted by makewonder on 2014 年 4 月 2 日 最近接触PAAS相关的知识,在研发过程中开始使用Docker搭建了自己完整的开发环境, ...
- SharePoint 2013怎样创建Wiki库
们使用Wiki页面来分享知识,增进团队合作.下面我将向大家展示SharePoint 2013 Wiki的使用方法.教程我都将以这张Wiki页面(即当前页)为示例. 编辑页面 如要编辑页面,单击顶部Ed ...
- nginx+php-fpm性能参数优化原则
1.worker_processes 越大越好(一定数量后性能增加不明显) 2.worker_cpu_affinity 所有cpu平分worker_processes 要比每个worker_pro ...
- JavaScript 如何从引用类型(Array 、 Object)创建一个新的对象
数组的增删改 1.新增一项可以使用concat方法,它不会对原有数组进行改动,而是创建一个新数组 let a = [0, 1, 2] let b = a.concat([3]) console.log ...
- Ubuntu18.04 修改DNS
Ubuntu18.04 修改DNS sudo vim /etc/systemd/resolved.conf 修改如下: [Resolve] DNS=119.29.29.29 保存退出后 systemc ...
- Atitit 如何设置与安放知识的trap陷阱 知识聚合 rss url聚合工具 以及与trap的对比
Atitit 如何设置与安放知识的trap陷阱 知识聚合 rss url聚合工具 以及与trap的对比 1.1. 安放地点 垂直知识网站csdn cnblogs等特定频道栏目,大牛博客 1 1.2. ...
- vivado保存debug波形
vivado保存debug波形 Vivado下debug后的波形通过图形化界面并不能保存抓取到波形,保存按钮只是保存波形配置,如果需要保存波形需要通过TCL命令来实现: write_hw_ila_ ...
- 各个框架下的aop
http://www.cnblogs.com/neverc/p/5241466.html