Summary: Prime
最近遇到很多问题都跟Prime有关,于是总结一下:
Prime definition:A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a prime number is called a composite number. So 1 is not a prime, but 2 is a prime.
性质:
先说composite number:Every composite number has at least one prime factor less than or equal to square root of itself. composite又必须含有divisor other than 1 and itself, 所以必须在[2 ,
] inclusive之间有可以整除的prime factor
所以prime number的性质就是:在 [2 ,
] inclusive 之间找不到一个数i 使得 n % i == 0
问题1:Efficient program to print all prime factors of a given number
Given a number n, write an efficient function to print all prime factors of n. For example, if the input number is 12, then output should be “2 2 3″. And if the input number is 315, then output should be “3 3 5 7″.
Following are the steps to find all prime factors.
1) While n is divisible by 2, print 2 and divide n by 2.
2) After step 1, n must be odd. Now start a loop from i = 3 to square root of n. While i divides n, print i and divide n by i, increment i by 2 and continue.
3) If n is a prime number and is greater than 2, then n will not become 1 by above two steps. So print n if it is greater than 2.
// A function to print all prime factors of a given number n
void primeFactors(int n)
{
// Print the number of 2s that divide n
while (n% == )
{
printf("%d ", );
n = n/;
} // n must be odd at this point. So we can skip one element (Note i = i +2)
for (int i = ; i <= sqrt(n); i = i+)
{
// While i divides n, print i and divide n
while (n%i == )
{
printf("%d ", i);
n = n/i;
}
} // This condition is to handle the case whien n is a prime number
// greater than 2
if (n > )
printf ("%d ", n);
}
测试一下上述程序
int main()
{
int n = ;
primeFactors(n);
return ;
}
输出
要特别注意12行sqrt(n)中的n是一直随 n = n / i 更新的,而不是始终都是最初始的n。这相当于是在找新的n的prime factor, 而且确定这个新的n的prime factor不包括之前找到过的 i,因为前面已经把小的prime factor全找出来了。反正只要 n 还是 composite number, 那么一定有一个prime factor小于sqrt(n), 那么就一定能找到新的 i 满足条件。找不到就说明 n 不是 composite number了。所以,最后跳出while循环是因为要么n变成了1,要么n变成了质数
当然不这么设置 i 的范围也可以,可以设置 i 从3 到最初的sqrt(n), 或者甚至n,这样可以,但是浪费时间。
How does this work?
The steps 1 and 2 take care of composite numbers and step 3 takes care of prime numbers. To prove that the complete algorithm works, we need to prove that steps 1 and 2 actually take care of composite numbers. This is clear that step 1 takes care of even numbers. And after step 1, all remaining prime factor must be odd (difference of two prime factors must be at least 2), this explains why i is incremented by 2.
Now the main part is, the loop runs till square root of n not till. To prove that this optimization works, let us consider the following property of composite numbers.
Every composite number has at least one prime factor less than or equal to square root of itself.
This property can be proved using counter statement. Let a and b be two factors of n such that a*b = n. If both are greater than
, then a.b >
which contradicts the expression “a * b = n”.
In step 2 of the above algorithm, we run a loop and do following in loop
a) Find the least prime factor i (must be less than
)
b) Remove all occurrences i from n by repeatedly dividing n by i.
c) Repeat steps a and b for divided n and i = i + 2. The steps a and b are repeated till n becomes either 1 or a prime number.
问题2: 写一个判断自然数n是不是prime的函数
public class Solution {
public boolean isPrime(int n) {
if (n <= 1) return false;
if (n == 2) return true;
if (n % 2 == 0) return false;
for (int i=3; i<=Math.sqrt(n); i=i+2) {
if (n % i == 0) return false;
}
return true;
}
}
Wiki上也给出了这个算法:The property of being prime (or not) is called primality. A simple but slow method of verifying the primality of a given number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and
. Algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of special forms, such as Mersenne numbers. As of April 2014, the largest known prime number has 17,425,170 decimal digits.
问题3:
Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.
For example, if n is 10, the output should be “2, 3, 5, 7″. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19″.
The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so (Ref Wiki).
Following is the algorithm to find all the prime numbers less than or equal to a given integer n by Eratosthenes’ method:
- Create a list of consecutive integers from 2 to n: (2, 3, 4, …, n).
- Initially, let p equal 2, the first prime number.
- Starting from p, count up in increments of p and mark each of these numbers greater than p itself in the list. These numbers will be 2p, 3p, 4p, etc.; note that some of them may have already been marked.
- Find the first number greater than p in the list that is not marked. If there was no such number, stop. Otherwise, let p now equal this number (which is the next prime), and repeat from step 3.
When the algorithm terminates, all the numbers in the list that are not marked are prime.
#include <stdio.h>
#include <string.h> // marks all mutiples of 'a' ( greater than 'a' but less than equal to 'n') as 1.
void markMultiples(bool arr[], int a, int n)
{
int i = , num;
while ( (num = i*a) <= n )
{
arr[ num- ] = ; // minus 1 because index starts from 0.
++i;
}
} // A function to print all prime numbers smaller than n
void SieveOfEratosthenes(int n)
{
// There are no prime numbers smaller than 2
if (n >= )
{
// Create an array of size n and initialize all elements as 0
bool arr[n];
memset(arr, , sizeof(arr)); /* Following property is maintained in the below for loop
arr[i] == 0 means i + 1 is prime
arr[i] == 1 means i + 1 is not prime */
for (int i=; i<n; ++i)
{
if ( arr[i] == )
{
//(i+1) is prime, print it and mark its multiples
printf("%d ", i+);
markMultiples(arr, i+, n);
}
}
}
} // Driver Program to test above function
int main()
{
int n = ;
printf("Following are the prime numbers below %d\n", n);
SieveOfEratosthenes(n);
return ;
}
Summary: Prime的更多相关文章
- csu 1756: Prime
1756: Prime Submit Page Summary Time Limit: 3 Sec Memory Limit: 128 Mb Submitted: 281 ...
- Summary of Critical and Exploitable iOS Vulnerabilities in 2016
Summary of Critical and Exploitable iOS Vulnerabilities in 2016 Author:Min (Spark) Zheng, Cererdlong ...
- 三个不常用的HTML元素:<details>、<summary>、<dialog>
前面的话 HTML5不仅新增了语义型区块级元素及表单类元素,也新增了一些其他的功能性元素,这些元素由于浏览器支持等各种原因,并没有被广泛使用 文档描述 <details>主要用于描述文档或 ...
- Java 素数 prime numbers-LeetCode 204
Description: Count the number of prime numbers less than a non-negative number, n click to show more ...
- Prime Generator
Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- [LeetCode] Summary Ranges 总结区间
Given a sorted integer array without duplicates, return the summary of its ranges. For example, give ...
- UVa 524 Prime Ring Problem(回溯法)
传送门 Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbe ...
- Network Basic Commands Summary
Network Basic Commands Summary set or modify hostname a) temporary ways hostname NEW_HOSTNAME, b ...
随机推荐
- 从零开始学习Hadoop--第4章 序列化(转载)
作者对序列化的描述浅显易懂!(https://www.douban.com/note/313096752/) 1. 序列化从头说 在面向对象程序设计中,类是个很重要的概念.所谓“类”,可以将它想像成建 ...
- 基于Python的跨平台端口转发工具
背景 使用lcx也好,nc也好,总是会被安全防护软件查杀,所以想着自己写一个.顺面学习一下,端口转发的原理. 端口转发的逻辑 端口转发的逻辑很简单开启两个scoket,一个绑定IP端口进行listen ...
- 【CF870F】Paths 分类讨论+数学
[CF870F]Paths 题意:一张n个点的图,对于点i,j(i!=j),如果gcd(i,j)!=1,则i到j有一条长度为1的无向边.令dis(i,j)表示从i到j的最短路,如果i无法到j,则dis ...
- 通过Intent Flags ,从桌面返回到App最后Activity
extends:http://bbs.csdn.net/topics/350269396,http://blog.csdn.net/moreevan/article/details/6788048 最 ...
- oracle fm格式化
select to_char(0.56,'FM999,999,990.00' ) from dual 其中 9代表如果存在数字则显示数字,不存在显示空格 其中 0代表如果存在数字则显示数字,不存在则显 ...
- 兵器簿之cocoaPods的安装和使用
以前添加第三方库的时候总是直接去Github下载然后引入,但是如果这些第三方库发生了更新,我们还需要手动去更新项目,所以现在引入之前一直想弄都一直没有弄的cocoaPods,现在演示一把过程 其实非常 ...
- python获取windows所有com口
import serial import serial.tools.list_ports port_list = list(serial.tools.list_ports.comports()) po ...
- 170821、本地代码上传gitlub
第一步:建立git仓库 cd到你的本地项目根目录下,执行git命令 git init #初始化项目 第二步:将项目的所有文件添加到仓库中 git add . 或者git add -A #如果想添加某个 ...
- ELK(使用RPM包安装配置ELK)
1,安装环境查看 2,下载rmp包 下载地址:https://www.elastic.co/cn/downloads 分别下载最新rmp包 elasticsearch-6.2.4.rpm logsta ...
- CVPR2018资源汇总
CVPR 2018大会将于2018年6月18~22日于美国犹他州的盐湖城(Salt Lake City)举办. CVPR2018论文集下载:http://openaccess.thecvf.com/m ...