为什么实数系里不存在最小正数?(Why the smallest positive real number doesn't exist in the real number system ?)
We define the smallest positive real number as the number which is explicitly greater than zero and yet less than all other positive real numbers except itself.
The smallest positive real number, if exists, implies the existence of the second greater positive real number after it, which subtracts the smallest positive real number equals the smallest positive real number. The difference between the second greater positive real number and smallest positive real number could not be any other positive real number greater than the smallest positive real number, otherwise there must be a number with the magnitude of twice the smallest positive real number between the smallest positive real number and the second greater positive real number, which contradicts to the definition of the second greater positive real number, that is there is no number between it and the the smallest positive real number. Follow the same meaning, one could define the third greater positive real number which subtracts the second greater positive real number equals the smallest positive real number, then the 4th greater positive real number, 5th, ...this would finally make the set of positive real number countable, while Cantor already proved the set of positive real number is uncountable using the diagonal argument.
The smallest positive real number, if exists, also implies the existence of the indivisible unit. The smallest positive real number is not legitimate to divide, otherwise one would get numbers less than the smallest positive real number, which contradicts to the definition of the smallest positive real number. N.B. the conclusion is conducted out in terms of assuming the existence of the smallest positive real number. In such a number system, the ultimate unit of measurement would be the smallest positive real number, based on such idea one would be eventually led to the world of atomism.
The Greek scientist Democritus (about 460– 380 B.C.) apparently considered solids as "sums" of a tremendous number of extremely small "indivisible" atoms (don't get confused with that in chemistry). Democritus held that his atoms, being not only very small but the smallest possible particles of matter, were not only too small to be divided physically but also logically indivisible. In such a system, the ultimate unit of measurement would be the size of an atom.
Obviously, the atom unit size is equal to the smallest positive real number. However, Euclidean geometry, in particular, the Pythagorean theorem denies the existence of such indivisible atom size, therefore denied the existence of the indivisible unit-the smallest positive real number.
Consider any geometrical figures (e.g., squares, triangles, etc.) with line segments as sides from atomism, then the length of each side will be measured in atoms, and each side will be assigned an integer as its measure. (Each side will be n atomic units long, where n is a positive integer.) Now consider an isosceles right triangle with side composed of 100 atoms, how many atoms its hypotenuse includes? Using the Pythagorean theorem \(\sqrt{100^2 + 100^2}=\sqrt{2\times 100^2}=100\sqrt{2}\), the hypotenuse includes \(100\sqrt{2}\) atoms, while \(100\sqrt{2}\) is not a whole number. And notice that this is true irrespective of the size of the side, so the situation does not change if we suppose that the side of the isosceles right triangle are composed of a very large number of very small “space atoms”. Even if the sides are billions of atoms long, the length of the hypotenuse will still be an irrational number of such atoms. Let \(a\), the whole number of atoms in the side of a isosceles right triangle, be as large as you like, and let \(c\) be the number of atoms in the hypotenuse; \(c\) will still be an irrational number, for \(c = a\sqrt{2}\) . This means that there is no integer \(c\) such that the hypotenuse of an isosceles right triangle is \(c\) space atoms long if its side is some integer \(n\) space atoms long. To put it another way, the diagonal and the side of a square cannot both be measured atomistically.
In one word, the smallest positive real number doesn't exist !
为什么实数系里不存在最小正数?(Why the smallest positive real number doesn't exist in the real number system ?)的更多相关文章
- Java输出double类型中的最小正数和最大正数
这是<写给大忙人看的java核心技术>中的一道练习题. 1. 输出最大正数值 System.out.println(Double.MAX_VALUE); 直接输出包装类Double的MAX ...
- Leetcode之二分法专题-744. 寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target)
Leetcode之二分法专题-744. 寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target) 给定一个只包含小写字母的有序数组letters ...
- LeetCode 41. 缺失的第一个正数(First Missing Positive)
题目描述 给定一个未排序的整数数组,找出其中没有出现的最小的正整数. 示例 1: 输入: [1,2,0] 输出: 3 示例 2: 输入: [3,4,-1,1] 输出: 2 示例 3: 输入: [7,8 ...
- [Swift]LeetCode483. 最小好进制 | Smallest Good Base
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...
- C#LeetCode刷题之#744-寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4001 访问. 给定一个只包含小写字母的有序数组letters 和 ...
- 【ZOJ 3609】Modular Inverse 最小乘法逆元
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x ...
- ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- OPTM-Optimal Marks-SPOJ839最小割
You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...
- HDU 1394 Minimum Inversion Number(最小逆序数 线段树)
Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...
随机推荐
- Nginx 设置域名转向配置
#运行用户 #user www-data; #启动进程,通常设置成和cpu的数量相等 worker_processes 2; #全局错误日志及PID文件 error_log logs/error.lo ...
- [Aaronyang] 写给自己的WPF4.5 笔记12[自定义控件-AyImageButton的过程 2/4]
我的文章一定要做到对读者负责,否则就是失败的文章 --------- www.ayjs.net aaronyang技术分享 博文摘要:点击前往文章正文 学会怎样给用户提供事件接口,本例子 ...
- cocos2d-x与UIKit混合编程实现半透明效果
关键词 cocos2d-x, UIKit, transparent 问题 cocos2d-x使用一个专门的OpenGL View进行渲染, 它的渲染和UIKit是分开进行的, 因此我们使用时一般是把c ...
- CentOS 7 安装SVN服务端
CentOS7下安装SVN服务 1. yum命令即可方便的完成安装# sudo yum install subversion 测试安装是否成功:# svnserve --version 更改svn的默 ...
- Python--Redis实战:第四章:数据安全与性能保障:第7节:非事务型流水线
之前章节首次介绍multi和exec的时候讨论过它们的”事务“性质:被multi和exec包裹的命令在执行时不会被其他客户端打扰.而使用事务的其中一个好处就是底层的客户端会通过使用流水线来提高事务执行 ...
- JS 日期转换,格式化等常用的函数定义
//判断字符串是否日期格式 function isDate(val) { return new Date(val) != "Invalid Date"; } //日期格式化 fun ...
- 【转】SAP BW 顾问靠手 — SAP中的例程
什么是例程(Routine)? 例程就是我们可以自己定义的程序代码.通过程序代码来完成我们的需求,因为业务是千变万化,如果想让产品能跟随上业务的脚步,就必须要有非常灵活的功能来补充.大家都知道软件产品 ...
- js绝对地址图片转换成base64的方法
//将图片转换成base64 function getBase64Image(url, callback){ var canvas = document.createElement('canvas') ...
- 树莓派2上手 —— Raspbian的一些基本配置问题
先说点废话: 原来的笔记本因为上次被儿子拿着充电器玩的时候漏电烧了主板,修了之后还是时不时就突然宕机,Windows也完全起不来.后面这个问题倒是不大,真要用Windows的时候拿老婆的用一下就是了, ...
- 奇怪的Excel导入问题,OleDbException (0x80004005): 未指定的错误
windows server 2008 的安全性做的比较好,首先进入系统盘(一般都是C:\),点击工具--文件夹选项--查看,把“使用共享向导(推荐)”的勾去掉,把“隐藏受保护的操作系统文件(推荐)” ...