We define the smallest positive real number as the number which is explicitly greater than zero and yet less than all other positive real numbers except itself.
The smallest positive real number, if exists, implies the existence of the second greater positive real number after it, which subtracts the smallest positive real number equals the smallest positive real number. The difference between the second greater positive real number and smallest positive real number could not be any other positive real number greater than the smallest positive real number, otherwise there must be a number with the magnitude of twice the smallest positive real number between the smallest positive real number and the second greater positive real number, which contradicts to the definition of the second greater positive real number, that is there is no number between it and the the smallest positive real number. Follow the same meaning, one could define the third greater positive real number which subtracts the second greater positive real number equals the smallest positive real number, then the 4th greater positive real number, 5th, ...this would finally make the set of positive real number countable, while Cantor already proved the set of positive real number is uncountable using the diagonal argument.
The smallest positive real number, if exists, also implies the existence of the indivisible unit. The smallest positive real number is not legitimate to divide, otherwise one would get numbers less than the smallest positive real number, which contradicts to the definition of the smallest positive real number. N.B. the conclusion is conducted out in terms of assuming the existence of the smallest positive real number. In such a number system, the ultimate unit of measurement would be the smallest positive real number, based on such idea one would be eventually led to the world of atomism.
The Greek scientist Democritus (about 460– 380 B.C.) apparently considered solids as "sums" of a tremendous number of extremely small "indivisible" atoms (don't get confused with that in chemistry). Democritus held that his atoms, being not only very small but the smallest possible particles of matter, were not only too small to be divided physically but also logically indivisible. In such a system, the ultimate unit of measurement would be the size of an atom.
Obviously, the atom unit size is equal to the smallest positive real number. However, Euclidean geometry, in particular, the Pythagorean theorem denies the existence of such indivisible atom size, therefore denied the existence of the indivisible unit-the smallest positive real number.
Consider any geometrical figures (e.g., squares, triangles, etc.) with line segments as sides from atomism, then the length of each side will be measured in atoms, and each side will be assigned an integer as its measure. (Each side will be n atomic units long, where n is a positive integer.) Now consider an isosceles right triangle with side composed of 100 atoms, how many atoms its hypotenuse includes? Using the Pythagorean theorem \(\sqrt{100^2 + 100^2}=\sqrt{2\times 100^2}=100\sqrt{2}\), the hypotenuse includes \(100\sqrt{2}\) atoms, while \(100\sqrt{2}\) is not a whole number. And notice that this is true irrespective of the size of the side, so the situation does not change if we suppose that the side of the isosceles right triangle are composed of a very large number of very small “space atoms”. Even if the sides are billions of atoms long, the length of the hypotenuse will still be an irrational number of such atoms. Let \(a\), the whole number of atoms in the side of a isosceles right triangle, be as large as you like, and let \(c\) be the number of atoms in the hypotenuse; \(c\) will still be an irrational number, for \(c = a\sqrt{2}\) . This means that there is no integer \(c\) such that the hypotenuse of an isosceles right triangle is \(c\) space atoms long if its side is some integer \(n\) space atoms long. To put it another way, the diagonal and the side of a square cannot both be measured atomistically.
In one word, the smallest positive real number doesn't exist !

为什么实数系里不存在最小正数?(Why the smallest positive real number doesn't exist in the real number system ?)的更多相关文章

  1. Java输出double类型中的最小正数和最大正数

    这是<写给大忙人看的java核心技术>中的一道练习题. 1. 输出最大正数值 System.out.println(Double.MAX_VALUE); 直接输出包装类Double的MAX ...

  2. Leetcode之二分法专题-744. 寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target)

    Leetcode之二分法专题-744. 寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target) 给定一个只包含小写字母的有序数组letters  ...

  3. LeetCode 41. 缺失的第一个正数(First Missing Positive)

    题目描述 给定一个未排序的整数数组,找出其中没有出现的最小的正整数. 示例 1: 输入: [1,2,0] 输出: 3 示例 2: 输入: [3,4,-1,1] 输出: 2 示例 3: 输入: [7,8 ...

  4. [Swift]LeetCode483. 最小好进制 | Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  5. C#LeetCode刷题之#744-寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4001 访问. 给定一个只包含小写字母的有序数组letters 和 ...

  6. 【ZOJ 3609】Modular Inverse 最小乘法逆元

    The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x  ...

  7. ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  8. OPTM-Optimal Marks-SPOJ839最小割

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

  9. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

随机推荐

  1. 【FTP】FTP服务器的搭建

    记录一下FTP服务器的搭建首先打开 程序和功能>打开或关闭Windows功能 进入到Windows功能界面:勾选FTP服务器.然后再在IIS界面,新建一个网站.右键网站,选择“添加到FTP发布” ...

  2. 在 OC 中调用 Swift 代码

    1.在 Objective-C 项目中使用 Swift 代码 1)在 OC 项目中创建 .Swift 文件,文件中的格式为其本有的格式. 2)Xcode 提示是否创建 Objective-C brid ...

  3. java 高级用法整理

    一.retentionpolicy.class vs runtime区别 java5,增加了注解的功能:其中retentionpolicy注解的生命周期,提供了三种选择策略 source.class和 ...

  4. MySQL 5.6新特性 -- Index Condition Pushdown

    Index Condition Pushdown(ICP)是针对mysql使用索引从表中检索行数据时的一种优化方法.   在没有ICP特性之前,存储引擎根据索引去基表查找并将数据返回给mysql se ...

  5. [转]Linux性能分析工具汇总合集

    出于对Linux操作系统的兴趣,以及对底层知识的强烈欲望,因此整理了这篇文章.本文也可以作为检验基础知识的指标,另外文章涵盖了一个系统的方方面面.如果没有完善的计算机系统知识,网络知识和操作系统知识, ...

  6. xmind指定32位jdk解决在64位系统上不能启动的问题

    在xmind.ini文件的第一行添加下面的内容: -vmF:\kfgj\Java32.1.6\jdk1.6.0_16\bin\javaw.exe (根据实际情况指定32位jdk的javaw.exe文件 ...

  7. GCD 之线程死锁

    GCD 确实好用 ,很强大,相比NSOpretion 无法提供 取消任务的功能. 如此强大的工具用不好可能会出现线程死锁. 如下代码: - (void)viewDidLoad { [super vie ...

  8. Hive数据倾斜解决办法总结

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  9. Java知多少(8)类库及其组织结构

    Java 官方为开发者提供了很多功能强大的类,这些类被分别放在各个包中,随JDK一起发布,称为Java类库或Java API. API(Application Programming Interfac ...

  10. 学习Mysql过程中拓展的其他技术栈:Docker入门介绍

    一.Docker的介绍和安装 1. Docker是什么 百度百科的介绍: Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linu ...