We define the smallest positive real number as the number which is explicitly greater than zero and yet less than all other positive real numbers except itself.
The smallest positive real number, if exists, implies the existence of the second greater positive real number after it, which subtracts the smallest positive real number equals the smallest positive real number. The difference between the second greater positive real number and smallest positive real number could not be any other positive real number greater than the smallest positive real number, otherwise there must be a number with the magnitude of twice the smallest positive real number between the smallest positive real number and the second greater positive real number, which contradicts to the definition of the second greater positive real number, that is there is no number between it and the the smallest positive real number. Follow the same meaning, one could define the third greater positive real number which subtracts the second greater positive real number equals the smallest positive real number, then the 4th greater positive real number, 5th, ...this would finally make the set of positive real number countable, while Cantor already proved the set of positive real number is uncountable using the diagonal argument.
The smallest positive real number, if exists, also implies the existence of the indivisible unit. The smallest positive real number is not legitimate to divide, otherwise one would get numbers less than the smallest positive real number, which contradicts to the definition of the smallest positive real number. N.B. the conclusion is conducted out in terms of assuming the existence of the smallest positive real number. In such a number system, the ultimate unit of measurement would be the smallest positive real number, based on such idea one would be eventually led to the world of atomism.
The Greek scientist Democritus (about 460– 380 B.C.) apparently considered solids as "sums" of a tremendous number of extremely small "indivisible" atoms (don't get confused with that in chemistry). Democritus held that his atoms, being not only very small but the smallest possible particles of matter, were not only too small to be divided physically but also logically indivisible. In such a system, the ultimate unit of measurement would be the size of an atom.
Obviously, the atom unit size is equal to the smallest positive real number. However, Euclidean geometry, in particular, the Pythagorean theorem denies the existence of such indivisible atom size, therefore denied the existence of the indivisible unit-the smallest positive real number.
Consider any geometrical figures (e.g., squares, triangles, etc.) with line segments as sides from atomism, then the length of each side will be measured in atoms, and each side will be assigned an integer as its measure. (Each side will be n atomic units long, where n is a positive integer.) Now consider an isosceles right triangle with side composed of 100 atoms, how many atoms its hypotenuse includes? Using the Pythagorean theorem \(\sqrt{100^2 + 100^2}=\sqrt{2\times 100^2}=100\sqrt{2}\), the hypotenuse includes \(100\sqrt{2}\) atoms, while \(100\sqrt{2}\) is not a whole number. And notice that this is true irrespective of the size of the side, so the situation does not change if we suppose that the side of the isosceles right triangle are composed of a very large number of very small “space atoms”. Even if the sides are billions of atoms long, the length of the hypotenuse will still be an irrational number of such atoms. Let \(a\), the whole number of atoms in the side of a isosceles right triangle, be as large as you like, and let \(c\) be the number of atoms in the hypotenuse; \(c\) will still be an irrational number, for \(c = a\sqrt{2}\) . This means that there is no integer \(c\) such that the hypotenuse of an isosceles right triangle is \(c\) space atoms long if its side is some integer \(n\) space atoms long. To put it another way, the diagonal and the side of a square cannot both be measured atomistically.
In one word, the smallest positive real number doesn't exist !

为什么实数系里不存在最小正数?(Why the smallest positive real number doesn't exist in the real number system ?)的更多相关文章

  1. Java输出double类型中的最小正数和最大正数

    这是<写给大忙人看的java核心技术>中的一道练习题. 1. 输出最大正数值 System.out.println(Double.MAX_VALUE); 直接输出包装类Double的MAX ...

  2. Leetcode之二分法专题-744. 寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target)

    Leetcode之二分法专题-744. 寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target) 给定一个只包含小写字母的有序数组letters  ...

  3. LeetCode 41. 缺失的第一个正数(First Missing Positive)

    题目描述 给定一个未排序的整数数组,找出其中没有出现的最小的正整数. 示例 1: 输入: [1,2,0] 输出: 3 示例 2: 输入: [3,4,-1,1] 输出: 2 示例 3: 输入: [7,8 ...

  4. [Swift]LeetCode483. 最小好进制 | Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  5. C#LeetCode刷题之#744-寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4001 访问. 给定一个只包含小写字母的有序数组letters 和 ...

  6. 【ZOJ 3609】Modular Inverse 最小乘法逆元

    The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x  ...

  7. ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  8. OPTM-Optimal Marks-SPOJ839最小割

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

  9. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

随机推荐

  1. OkHttp踩坑记:为何 response.body().string() 只能调用一次?

    想必大家都用过或接触过 OkHttp,我最近在使用 Okhttp 时,就踩到一个坑,在这儿分享出来,以后大家遇到类似问题时就可以绕过去. 只是解决问题是不够的,本文将 侧重从源码角度分析下问题的根本, ...

  2. arcgis server缓存路径修改

    由于空间不够用,需要更换瓦片的输出路径,具体的修改方法如下: 1.打开ArcCatalog,打开GIS服务器,找到已经添加的gis服务器,一般都是机器名,如下所示,右键我的gis服务器(admin-t ...

  3. ORA-214 signalled during: ALTER DATABASE MOUNT 问题

    数据库服务器移动了位置,后来再连其数据库发现提示无法连接,大致为“无法为所有新实例创建连接...”,查看alert日志发现有如下错误: starting up 1 dispatcher(s) for ...

  4. 让ASP.NET Web API支持$format参数的方法

    在不使用OData的情况下,也可以让ASP.NET Web API支持$format参数,只要在WebApiConfig里添加如下三行红色粗体代码即可: using System; using Sys ...

  5. Spring Boot 2.0 热部署指南

    Spring Boot 2.0 支持热部署,实现方法很简单 Spring Boot 2.0 有几种热重载的选项. 推荐的方法是使用spring-boot-devtools 因为它提供了额外的开发时间功 ...

  6. 译:7.使用Spring MVC服务Web内容

    本指南向您介绍了使用Spring创建“hello world”网站的过程.阅读原文:Serving Web Content with Spring MVC 1. 你将会构建什么? 您将构建一个具有静态 ...

  7. ES6,Array.find()和findIndex()函数的用法

    ES6为Array增加了find(),findIndex函数. find()函数用来查找目标元素,找到就返回该元素,找不到返回undefined. findIndex()函数也是查找目标元素,找到就返 ...

  8. ES6,扩展运算符的用途

    ES6的扩展运算符可以说是非常使用的,在给多参数函数传参,替代Apply,合并数组,和解构配合进行赋值方面提供了很好的便利性. 扩展运算符就是三个点“...”,就是将实现了Iterator 接口的对象 ...

  9. 一次性将多个文件夹批处理压缩成多个.rar

    超级简单.不用自己写.bat批处理. 1. 打开winrar,选中所有要压缩的文件夹 2. 菜单->commands->add files to achive 3. 选中Files tab ...

  10. linux每日命令(6):rm命令

    rm是常用的命令,该命令的功能为删除一个目录中的一个或多个文件或目录,它也可以将某个目录及其下的所有文件及子目录均删除.对于链接文件,只是删除了链接,原有文件均保持不变. rm是一个危险的命令,使用的 ...