HDU 4738--Caocao's Bridges(重边无向图求桥)
Caocao's Bridges
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4254 Accepted Submission(s): 1337
Problem Description
Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he wouldn't give up. Caocao's army still was not good at water battles, so he came up with another idea. He built many islands in the Changjiang river, and based on those islands, Caocao's army could easily attack Zhou Yu's troop. Caocao also built bridges connecting islands. If all islands were connected by bridges, Caocao's army could be deployed very conveniently among those islands. Zhou Yu couldn't stand with that, so he wanted to destroy some Caocao's bridges so one or more islands would be seperated from other islands. But Zhou Yu had only one bomb which was left by Zhuge Liang, so he could only destroy one bridge. Zhou Yu must send someone carrying the bomb to destroy the bridge. There might be guards on bridges. The soldier number of the bombing team couldn't be less than the guard number of a bridge, or the mission would fail. Please figure out as least how many soldiers Zhou Yu have to sent to complete the island seperating mission.
Input
There are no more than 12 test cases.
In each test case:
The first line contains two integers, N and M, meaning that there are N islands and M bridges. All the islands are numbered from 1 to N. ( 2 <= N <= 1000, 0 < M <= N2 )
Next M lines describes M bridges. Each line contains three integers U,V and W, meaning that there is a bridge connecting island U and island V, and there are W guards on that bridge. ( U ≠ V and 0 <= W <= 10,000 )
The input ends with N = 0 and M = 0.
Output
For each test case, print the minimum soldier number Zhou Yu had to send to complete the mission. If Zhou Yu couldn't succeed any way, print -1 instead.
Sample Input
3 3
1 2 7
2 3 4
3 1 4
3 2
1 2 7
2 3 4
0 0
Sample Output
-1
4
Source
2013 ACM/ICPC Asia Regional Hangzhou Online
Recommend
liuyiding
题意:
现在有个(可重边)无向图,无向图的每条边上都有一定数目的守卫,你现在想派人去炸掉这个图的一条边,是的该图不连通。但是你只能炸1条边且如果该边守卫为x人,那么你至少要派x个人过去。所以现在问你最少需要派多少人出发?
分析:
本题的本质还是无向图求桥,且求得是守卫数目最少的那个桥。但是本题有3个点要注意:
1.所给的图可能不连通,且不连通的时候不需要炸,输出0.
2.当所要去炸的桥上的守卫数=0时,我们需要派的人数是1不是0.
3.任意两个节点u与v之间可能存在多条边。
前两点都挺好解决的,无非是加判断语句
对于重边的问题,是这样处理的:
放弃一般的模版直接比较父节点的做法,去比较边与递归上一层的“父边”是否是同时添加进去的,即可能可在这个点返回其父节点(有重边时)
具体看代码:
1 #include<cstdio>
2 #include<cstring>
3 #include<algorithm>
4 using namespace std;
5 const int maxn=1000+10;
6 const int maxm=2*1000*1000+100;
7 int n,m;
8 int tot;
9 int head[maxn];
10 struct Edge
11 {
12 int to,next,w;
13 }edges[maxm];
14 void add_edge(int u,int v,int w)
15 {
16 edges[tot]=(Edge){v,head[u],w};
17 head[u]=tot++;
18 edges[tot]=(Edge){u,head[v],w};
19 head[v]=tot++;
20 }
21
22 int pre[maxn],low[maxn];
23 int dfs_clock,point_num;
24 int ans;
25 void tarjan(int u,int E)
26 {
27 low[u]=pre[u]=++dfs_clock;
28 for(int e=head[u];e!=-1;e=edges[e].next)
29 {
30 int v=edges[e].to;
31 if(e==(E^1)) continue;
32 if(!pre[v])
33 {
34 tarjan(v,e);
35 low[u]=min(low[u],low[v]);
36 if(low[v]>pre[u])
37 ans=min(ans,edges[e].w);
38 }
39 else low[u]=min(low[u],pre[v]);
40 }
41 point_num++;
42 }
43 int main()
44 {
45 while(scanf("%d%d",&n,&m)==2&&n)
46 {
47 ans=1000000;
48 dfs_clock=point_num=tot=0;
49 memset(pre,0,sizeof(pre));
50 memset(head,-1,sizeof(head));
51 for(int i=0;i<m;i++)
52 {
53 int u,v,w;
54 scanf("%d%d%d",&u,&v,&w);
55 add_edge(u,v,w);
56 }
57 tarjan(1,-1);
58 if(point_num<n) printf("0\n"); //图不连通,不用炸
59 else if(ans==1000000) printf("-1\n"); //图中无桥
60 else if(ans==0) printf("%d\n",1); //桥上兵为0
61 else printf("%d\n",ans);
62 }
63 return 0;
64 }
HDU 4738--Caocao's Bridges(重边无向图求桥)的更多相关文章
- HDU 4738 Caocao's Bridges(Tarjan求桥+重边判断)
Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 2013杭州网赛 1001 hdu 4738 Caocao's Bridges(双连通分量割边/桥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738 题意:有n座岛和m条桥,每条桥上有w个兵守着,现在要派不少于守桥的士兵数的人去炸桥,只能炸一条桥 ...
- HDU 4738 Caocao's Bridges taijan (求割边,神坑)
神坑题.这题的坑点有1.判断连通,2.有重边,3.至少要有一个人背*** 因为有重边,tarjan的时候不能用子结点和父节点来判断是不是树边的二次访问,所以我的采用用前向星存边编号的奇偶性关系,用^1 ...
- 【HDU 4738 Caocao's Bridges】BCC 找桥
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738 题意:给定一个n个节点m条边的无向图(可能不连通.有重边),每条边有一个权值.判断其连通性,若双 ...
- Hdu 4738 Caocao's Bridges (连通图+桥)
题目链接: Hdu 4738 Caocao's Bridges 题目描述: 有n个岛屿,m个桥,问是否可以去掉一个花费最小的桥,使得岛屿边的不连通? 解题思路: 去掉一个边使得岛屿不连通,那么去掉的这 ...
- HDU 4738——Caocao's Bridges——————【求割边/桥的最小权值】
Caocao's Bridges Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- HDU 4738 Caocao's Bridges (2013杭州网络赛1001题,连通图,求桥)
Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4738 Caocao's Bridges (tarjan求桥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738 题目大意:给一些点,用一些边把这些点相连,每一条边上有一个权值.现在要你破坏任意一个边(要付出相 ...
- hdu 4738 Caocao's Bridges 图--桥的判断模板
Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
随机推荐
- Known Notation括号匹配类问题(2014年ACM/ICPC 亚洲区域赛牡丹江)
题意: 给你数字或 * 的串,你可以交换一个*和数字.在最前面添1.在一个地方插入*,问你使串满足入栈出栈的(RNP)运算法则. 思路: 引用:https://blog.csdn.net/u01158 ...
- C语言经典100例(1-50)
[程序1] 题目:有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? 分析:可填在百位.十位.个位的数字都是1.2.3.4.组成所有的排列后再去掉不满足条件的排列. main ...
- 使用parquet-hadoop.jar包解析hive parquet文件时,遇到FIXED_LEN_BYTE_ARRAY转换为Decimal 以及 INT96转换为timestamp问题
在使用parquet-hadoop.jar包解析parquet文件时,遇到decimal类型的数据为乱码,具体解决方法如下: 使用parquet-Hadoop.jar解析httpfs服务提供的parq ...
- 客户端相关知识学习(五)之什么是webView
webview是什么?作用是什么?和浏览器有什么关系? Android系统中内置了一款高性能 webkit 内核浏览器,在 SDK 中封装为一个叫做 WebView 组件也就是说WebView是一个基 ...
- Django框架——基础之路由系统(urls.py)11111111
1.URL路由系统前言 URL是Web服务的入口,用户通过浏览器发送过来的任何请求,都是发送到一个指定的URL地址,然后被响应. 在Django项目中编写路由,就是向外暴露我们接收哪些URL的请求,除 ...
- jQuery 遍历 - 后代
向下遍历 DOM 树 下面是两个用于向下遍历 DOM 树的 jQuery 方法: children() find() jQuery children() 方法 children() 方法返回被选元素的 ...
- groovy程序设计
/********* * groovy中Object类型存在隐式转换 可以不必使用as强转 */ Object munber = 9.343444 def number1 = 2 println mu ...
- 17种常用的JS正则表达式 非负浮点数 非负正数
<input type='text' id='SYS_PAGE_JumpPage' name='SYS_PAGE_JumpPage' size='3' maxlength='5' onkeyup ...
- 13、yum
1.yum yum是管理rpm包的工具 2.yum源(yum仓库) 要使用yum前,需要准备一个yum源(我们也称为yum仓库), 这个可以是一个互联网上的仓库,也可以是本地自己搭建的仓库. 仓库里面 ...
- 文件I/O简述
什么是I/O 宏观上讲,I/O是信息处理系统(例如计算机)与外部世界(可能是人或其他信息处理系统)之间的通信.输入(Input)是系统接收的信号或数据,输出(Output)是从其发送的信号或数据.另一 ...