Prometheus作为容器监控领域的事实标准,随着以Kubernetes为核心的云原生热潮的兴起,已经得到了广泛的应用部署。灵活的服务发现机制是Prometheus和Kubernetes两者得以连接的基础,本文将对这部分内容进行介绍,从而让读者了解Prometheus如何对Kubernetes集群本身以及对运行其上的各种应用进行有效地监控。

1. Prometheus概述

在正式进入主题之前,对Prometheus进行全面的了解是必要的。如下图所示,Prometheus Server是Prometheus生态中的核心组件。它会通过静态配置或者动态的服务发现,找到一系列的抓取对象,我们称之为target,Prometheus Server会定期从这些target中拉取时序数据,后文将对这部分内容进行详细叙述。对于不断抓取到的时序数据,Prometheus Server会进行聚合并默认存储到本地的时序数据库TSDB中。通过Prometehus Server的HTTP接口以及内置的查询语言PromQL可以对TSDB中保存的时序数据进行查询并通过Grafana等工具进行展示。同时,我们可以定义一系列的告警规则,Prometheus Server会定期查询TSDB以判断是否触发告警,若是则将报警消息推送至Alert Manager。Alert Manager会对告警消息进行聚合,去重等一系列复杂操作,在必要的时候将告警消息通过Email等方式通知用户。

2. 静态配置

当需要抓取的对象固定且数目较少时,将其直接写入Prometehus的配置文件是最好的选择。事实上,Prometheus Server作为一个应用程序,它同样对自己的运行数据进行了收集并以标准的方式对外暴露。因此,我们完全可以用Prometheus监控Prometheus。此时,Prometheus的配置文件如下,已知Prometheus Server运行在本地的9090端口:

global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s). # A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
# scheme: http
# metrics_path: /metric
static_configs:
- targets: ['127.0.0.1:9090']

上述配置文件的scrape_configs中包含一个名为prometheusjob。在Prometheus中一个job代表多个配置类似的target的集合,例如它们都可以通过http或者https协议进行访问,访问路径都为/metrics等等。在上述prometheus这个job中,仅仅包含一个地址为127.0.0.1:9090的target。简单地说,Prometheus Server会每隔scrape_interval就对target的URLhttp://127.0.0.1:9090进行访问获取时序数据。

3. Prometheus抓取机制

在Prometheus内部,target的发现和抓取分别是由Scrape Discovery Manager和Scrape Manager独立实现的。两者通过如下所示的channel进行连接:

chan map[string][]*targetgroup.Group

可以看到,上述管道传输的是map,其中的每个key和value对应的就是一个job名以及它所包含的一系列target group。事实上,在Prometheus内部一个target是用一系列的labels来描述的,每个label就是一个键值对,而一个target group就是共享某些labels的target集合。在下文中我们会了解到,一个Pod往往就和一个target group相对应。

每当从上述channel获取最新的target列表之后,Scrape Manager会进行重载。为每个job创建一个Scrape Pool,再为job中的每个target创建一个Scrape Loop。Scrape Pool会根据job的配置,创建一个http client供其中的各个Scrape Loop使用,而Scrape Loop则利用该http client具体完成对目标target的时序数据抓取工作。整体结构如下所示:

  • Scrape Manager

    • Scrape Pool 1

      • Scrape Loop for target 1
      • Scrape Loop for target 2
      • [...]
      • Scrape Loop for target n
    • Scrape Pool 2
      • [...]
    • [...]
    • Scrape Pool n
      • [...]

在Scrape Discovery Manager端同样会根据job进行划分。每个job中可以包含多种的服务发现,基于File,基于Kubernetes,基于Consul等等。对于各种服务发现方式,我们统一用provider对象进行封装,类似地,provider通过channel:

chan<- []*targetgroup.Group

定期向Scrape Discovery Manager推送最新的一系列target group。Scrape Discovery Manager则会将各个provider推送的target group进行聚合并向Scrape Manager推送。

事实上,对于静态配置的target,我们可以将它看作一种特殊的服务发现机制并且同样用provider进行封装,不同的是它只会用channel推送一次用户在配置文件中写好的target group,之后就会将channel关闭。

4. Kubernetes下的服务发现

在Kubernetes环境下,要做到对系统本身,特别是运行其上的各种应用的完整监控,静态配置的方式显然是无法满足需求的。因此,基于Kubernetes本身的服务发现能力,Prometheus实现了对于Kubernetes集群,包括系统组件,Pod,Service,Ingress等各个维度的动态监控。本文将以针对Pod的服务发现作为例子,对于其他维度,其实现机制是类似的。

若要实现对于集群中的Pod的动态监控,则Prometheus的配置文件中需要加入以下job:

- job_name: "kubernetes-pods"
kubernetes_sd_configs:
- role: pod
# api_server: <host>
# basic_auth: XXX
# tls_config: XXX
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name

其中的kubernetes_sd_configs表示基于Kubernetes进行服务发现,而其中的role字段为pod,表示针对Kubernetes中的pod资源对象,进行具体的服务发现操作。role字段其余的合法值包括nodeserviceendpointsingress

之后Prometheus会创建Kubernetes Client对role中指定的资源对象进行监听。一般Prometheus部署在Kubernetes集群中的话,Prometheus可以直接利用指定的Service Account对Kubernetes API进行访问。若Prometheus在Kubernetes集群之外,则kubernetes_sd_configs还需指定监控集群的API Server的URL以及相关的认证信息,从而能够创建对应集群的Client。

和Kubernetes内置的各种Controller类似,当目标资源对象为Pod时,Prometheus会对Kubernetes中的Pod进行List & Watch。每当集群中新增一个Pod,Prometheus就会对其进行处理,根据其配置创建一个target group。之后,Prometheus会遍历Pod中的每个Container:若Container没有暴露端口,则将一个Container作为一个target并将该target的__address__直接设置为Pod的IP地址;若Container暴露了一个或多个端口,则将每个端口设置为一个target且target的__address设置为Pod IP加对应端口的组合。如上文所述,一个target group中的targets会共享某些labels,当target group对应的是一个pod时,Prometheus会将Pod的基本信息作为共享labels。例如:__meta_kubernetes_namespace对应Pod所在的namespace,__meta_kubernetes_pod_name对应pod name,以及pod的ip,labels和annotations都会作为共享labels写入。

最终,这些自发现的target groups都将通过管道传递给Scrape Manager,由它来创建对于各个target的抓取实例并实现数据的抓取。

5. Targets的过滤机制

从上文可知,若配置了对于Kubernetes中Pod资源对象的服务发现,Prometheus会默认将每个Pod IP + Pod Port的组合作为一个taget。显然,并不是每个Pod都会暴露符合Prometheus标准的监控数据,即使暴露了,也不太可能在它的每个容器的每个端口进行暴露。因此,通过上述服务发现机制获取到的大部分targets都将是无效的。已知targets本质上是一系列的labels,因此我们可以根据labels是否符合某些规则实现对targets的过滤,在Prometheus中,这一机制叫做relabel。

Prometheus配置文件中的relabel_configs就包含了对于relabel规则的描述。我们可以同时定义多条relabels规则,它们会在Scrape Manager创建target实例并抓取之前,依次对targets实现过滤和修改。例如,上一节中的配置文件包含了三条relabel规则。第一条规则表示,若targets的labels中存在__meta_kubernetes_pod_annotation_prometheus_io_scrape且该label的值为true,则对应的target保留。这条规则就要求我们在定义Pod的配置时,若期望该Pod的监控数据被Prometheus抓取,则需要为它添加prometheus.io/scrape:true这样一个annotation,其余Pod生成的target都将被丢弃。

另外,我们还可以利用relabel实现对targets中labels的修改。一般来说,以__作为前缀的labels都只在内部使用,在relabels之后会统一删除。若想要保留其中的某些labels,我们可以如第二,三条规则所示,将名为__meta_kubernetes_namespace__meta_kubernetes_pod_name的labels重命名为kubernetes_namespacekubernetes_pod_name。这样一来,这两个label就能得到保留并出现在target最终的labels中,而对应的target抓取的所有指标都将额外添加kubernetes_namespacekubernetes_pod_name这两个labels。

这里我们只是对Prometheus的relabel机制进行了简单的介绍,事实上可以利用多条relabel规则的组合实现对于targets的复杂的过滤和修改,在此不再赘述。另外,Scrape Manager会在对target进行relabel之前,根据配置文件额外添加job__metrics_path____scheme__这三个label,而在relabel之后,若target中没有instance这个label,则会向其添加instance这个label,值为__address__这个label的值。

6. 总结

Prometheus基于Kubernetes等目标监控系统自身的服务发现能力提供了抓取对象自发现机制,由此带来的巨大灵活性是它能够成为云原生时代监控领域事实标准的重要原因之一。通过上文的叙述,我们可以知道,一个抓取对象,即target,在Prometheus是用一系列labels来描述的,全局的配置文件描述了某些targets的公共配置,而Kubernetes等系统的服务发现能力则为Prometheus提供了targets的大部分配置信息。最终,我们可以通过relabel机制对targets对象进行修改过滤,从而实现对于有效target的抓取。而对于target的抓取,本质上是通过target中的__scheme____address____metrcis_path__这几个label,拼凑出一个URL,比如http://10.32.0.2/metrics,对该URL发起一个GET请求,获取监控数据。

参考文献

Prometheus在Kubernetes下的服务发现机制的更多相关文章

  1. 基于consul构建golang系统分布式服务发现机制

    原文地址-石匠的Blog: http://www.bugclosed.com/post/5 在分布式架构中,服务治理是一个重要的问题.在没有服务治理的分布式集群中,各个服务之间通过手工或者配置的方式进 ...

  2. 从零开始入门 | Kubernetes 中的服务发现与负载均衡

    作者 | 阿里巴巴技术专家  溪恒 一.需求来源 为什么需要服务发现 在 K8s 集群里面会通过 pod 去部署应用,与传统的应用部署不同,传统应用部署在给定的机器上面去部署,我们知道怎么去调用别的机 ...

  3. Kubernetes 中的服务发现与负载均衡

    原文:https://www.infoq.cn/article/rEzx9X598W60svbli9aK (本文转载自阿里巴巴云原生微信公众号(ID:Alicloudnative)) 一.需求来源 为 ...

  4. Istio技术与实践01: 源码解析之Pilot多云平台服务发现机制

    服务模型 首先,Istio作为一个(微)服务治理的平台,和其他的微服务模型一样也提供了Service,ServiceInstance这样抽象服务模型.如Service的定义中所表达的,一个服务有一个全 ...

  5. Java编程技术之浅析SPI服务发现机制

    SPI服务发现机制 SPI是Java JDK内部提供的一种服务发现机制. SPI->Service Provider Interface,服务提供接口,是Java JDK内置的一种服务发现机制 ...

  6. 深入理解SPI机制-服务发现机制

    https://www.jianshu.com/p/3a3edbcd8f24 SPI ,全称为 Service Provider Interface,是一种服务发现机制.它通过在ClassPath路径 ...

  7. Prometheus 通过 consul 实现自动服务发现

    1.Consul 介绍 Consul 是基于 GO 语言开发的开源工具,主要面向分布式,服务化的系统提供服务注册.服务发现和配置管理的功能.Consul 提供服务注册/发现.健康检查.Key/Valu ...

  8. prometheus服务发现机制

    一. Prometheus与服务发现 1.1 目前支持的服务发现方式 二. 案例 2.1 基于文件的服务发现 2.2 基于Consul的服务发现 三.本地测试 3.1 基于文件的服务发现 1.测试环境 ...

  9. 基于Kubernetes服务发现机制的探讨Non Service

    服务注册 注册中⼼作为一般的RPC/Web服务中的底层设施提供了服务进程元数据(IP, Port, Interface, Group,Method等)存储,被Watch的功能,每个服务进程均需接⼊同⼀ ...

随机推荐

  1. jquery判断cookie是否存在

    首先请加载jquery库与jquery cookie插件 http://code.jquery.com/jquery-latest.js http://files.cnblogs.com/afish/ ...

  2. Linux 指令总结

    1. 显示本机信息 显示ip地址 hostname -i 显示当前使用用户 whoani 显示cpu信息 lscpu

  3. mongodb aggregate

    $project:修改输入文档的结构.可以用来重命名.增加或删除域,也可以用于创建计算结果以及嵌套文档. $match:用于过滤数据,只输出符合条件的文档.$match使用MongoDB的标准查询操作 ...

  4. 微擎后台进行GET提交

    微擎form表单进行GET提交时,要传递 name 分别为 c , a , m , do 的值 例如: <form action="{php echo $this->create ...

  5. BZOJ2656 [Zjoi2012]数列(sequence)[模拟]

    这个递推式子可以发现$i$是偶数下标可以缩一半,是奇数下标就可以拆成两个下标,$\lfloor \frac{i}{2} \rfloor$以及$\lfloor \frac{i}{2}+1 \rfloor ...

  6. 红帽Linux故障定位技术详解与实例(1)

    红帽Linux故障定位技术详解与实例(1) 2011-09-28 14:26 圈儿 BEAREYES.COM 我要评论(0) 字号:T | T 在线故障定位就是在故障发生时, 故障所处的操作系统环境仍 ...

  7. 使用sql做迁移矩阵

    在数据分析数据差异的时候 经常用到一个图叫做迁移矩阵. 其中里面的值可以是数量也可以是百分比,我们可以从一个时间点明确的看到在另一个时间点或者另一个时间点 子类之间数量迁移. 比如这次我在公司与业务核 ...

  8. PHP设置Redis key在当天有效

    本文援引自:https://blog.csdn.net/zpf_nevergiveup/article/details/81066500 $redis->set($key,$value); $e ...

  9. eclipse svn同步过滤掉某些不需要同步的文件

    注:这里说的svn是eclipse里svn插件 默认情况下,我们在点击svn同步时,总是会把一些不需要的目录和文件也给同步了,这样我觉得很晃眼睛,所以在这里说下怎么去去掉不想同步的文件 1.默认同步下 ...

  10. Dubbo搭建HelloWorld-搭建服务提供者与服务消费者并完成远程调用(附代码下载)

    场景 Dubbo简介与基本概念: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/103555224 Dubbo环境搭建-ZooKe ...