Selective Search for Object Recognition 论文笔记【图片目标分割】
这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒.
前言:
这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对找到图片中,可能的区域目标,减少目标碎片,提升物体检测效率. 下面是这篇文章的笔记:
介绍及引言:
图片是分层次的,比如下图中a:
沙拉和匙在沙拉碗里,而碗又在桌子上,另外桌子和木头有关或者说桌子和桌子上的所有东西有关.所以图片中的目标是有层次的. 图片分割应该按层次来,也不存在使用单个策略这样通用的方法来进行图片分割,所以对图片分割都是基于多个策略,但是这样又会在合并区域的时候产生冲突. 比如说上图中的b图,猫可以使用颜色进行分割,但是它们的纹理是一样的. 相反的 ; 图C中的变色龙和周围的叶子在颜色上是相似的,但是在纹理上确实不同的.最后,图d中,汽车轮子和汽车在颜色和纹理上都是不同的,但是和汽车的形状吻合度很高. 对于这三个图,采用他们其中的一种视觉特征是无法来对它们进行图片分割的.
在这篇文章中,作者结合直觉分割算法和穷举搜索算法来提出这个selective search(选择性搜索)算法,使用直觉分割算法是希望达到结合图片的结构层次从下至上来分割,来产生目标区域. 使用穷举搜索算法的目的是得到所有可能是目标的区域. 选择性搜索算法,使用的是多样化在抽样算法
在这篇文章中,作者主要从下面问题来介绍选择性策略:
1. 选择性策略采用的是什么样的多样性策略来自适应分割图片?.
2. 选择性策略在图片中生成高质量小目标的效率怎么样?
3. 能否使用选择性策略来结合分类模型和外观模型来进行目标识别?
选择性算法介绍:
特点介绍:
1. 适用所有尺寸.
目标可以以任意尺寸出现在图片中,甚至有些目标和其他目标的边界并不明显,面对这些问题,选择性算法会对所有的目标尺寸进行记录,就像下图一样,
可以很容易使用层次算法来实现.
2. 多样化.
单个的策略无法去处理各种各样差异化区域. 所以使用了多种策略比如颜色空间,纹理,吻合度等.
3. 快速的计算.
流程介绍:
选择性算法使用的是按层次合并算法(Hierarchical Grouping),基本思路是这样:
通过对一张图片从低向上进行层次划分,当我们划出一个大区域时,继续在这个大区域中迭代划分,直到划不出区域为止.并将这个过程中产生的所有的区域记录下来,
在通过颜色,纹理,吻合度,大小来将这些细碎的区域进行合并.这种方式不需要设定滑动窗口,滑动格子,可以适应于任何目标的尺寸.
那么这个算法的具体过程:
1. 首先使用Efficient Graph-Based Image Segmentation论文中的方法来按层次来快速得到分割区域R
2. 初始化相似度集合S
3. 从分割区域集合R中来两两计算相似度,放入到相似度S集合中.
4. 从相似度S集合中,取出相似度最高的两个分割区域.然后将这两个区域进行合并,并放入到R中,然后从相似度S集合中去除掉
这两个分割区域相关联的区域.然后计算合并的新区域 和它邻近区域的相似性,放入到S中,这样循环.直到S集合为空集
5.重复3直到这个区域变为一个.
然后输出在这个过程中的所有的变化的区域.
关于多样性策略:
分为两个大部分: 颜色空间多样性,区域相似度多样性
1. 颜色空间多样性包含八种: [1]. RGB,[2]. I灰度图(grey), [3]. Lab,[4]. RGB图像中归一化的rg通道和图像的灰度图. [5].HSV
[6].归一化的rbg,[7].C,[8].H
2. 区域相似度多样性: 对纹理,吻合度,大小这几个特征进行计算
具体推倒过程,见论文.
那么选择性算法在物体识别中如何使用的呢?
我们使用选择性算法获取到一系列可能有目标的区域L,然后我们将我们事先打好标签的目标区域(我们成为的GT)作为正样本,在L集合中的区域中和GT的IOU在0.2~0.5之间的作为这个类的负样本,对于重合度及IOU超过0.7的负样本,我将它丢掉,然后对这些区域的数据,进行特征提取,论文中使用的SIFT算法,然后将这些特征中一起放入到线性SVM进行该类进行训练.然后将得分很高的错误样本,放入到负样本中继续训练.依次往复.
Selective Search for Object Recognition 论文笔记【图片目标分割】的更多相关文章
- 【计算机视觉】Selective Search for Object Recognition论文阅读3
Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong 在前 ...
- 【计算机视觉】Selective Search for Object Recognition论文阅读2
Selective Search for Object Recognition 是J.R.R. Uijlings发表在2012 IJCV上的一篇文章.主要介绍了选择性搜索(Selective Sear ...
- 【计算机视觉】Selective Search for Object Recognition论文阅读1
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...
- Notes on 'Selective Search For Object Recognition'
UijlingsIJCV2013, Selective Search For Object Recognition code 算法思想 利用分割算法将图片细分成很多region, 或超像素. 在这个基 ...
- 论文笔记:Selective Search for Object Recognition
与 Selective Search 初次见面是在著名的物体检测论文 「Rich feature hierarchies for accurate object detection and seman ...
- [论文理解]Selective Search for Object Recognition
Selective Search for Object Recognition 简介 Selective Search是现在目标检测里面非常常用的方法,rcnn.frcnn等就是通过selective ...
- Selective Search for Object Recognition
http://blog.csdn.net/charwing/article/details/27180421 Selective Search for Object Recognition 是J.R. ...
- 目标检测--Selective Search for Object Recognition(IJCV, 2013)
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...
- 机器学习:Selective Search for Object Recognition
今天介绍 IJCV 2013 年的一篇文章,Selective Search for Object Recognition,这个是后面著名的DL架构 R-CNN 的基础,后续介绍 R-CNN 的时候, ...
随机推荐
- python 冒泡排序,递归
冒泡排序:li = [33, 55, 58, 66, 58, 555,20000000000000000000000, 5555,5555, 5, 6, 62,1]for i in range(1,l ...
- CentOS 7.2下安装Mono 5.0
微软Build2017大会期间.NET领域的.NET core之外,就是Visual Studio For Mac,大家都知道Visual Studio For Mac 是基于Mono运行的,Mono ...
- CSS3如何实现超出指定文本以省略号显示效果
不做前端很久了,今天从重构师那里了解到CSS3已经可以实现很多以往必须通过JS才能实现的效果,如渐变,阴影,自动截断文本展示省略号等等强大效果,而且这些功能日渐成熟,已经大量用于生产环境.H5真的日渐 ...
- js事件小结
首先事件绑定分为2种方法 一种为"DOM0级"方法,这里我理解为事件指定 var oDiv = document.getElementById("div1"); ...
- Bash Excercises
1. cat <<EOF #!/bin/bash function printHelp { cat<<EOF Run the Dash vector tests. Usage: ...
- Comparing the contribution of NBA draft picks(转)
When it comes to the NBA draft, experts tend to argue about a number of things: at which position wi ...
- v$session & v$session_wait
(1)v$session v$session视图记录了当前连接到数据库的session信息 Column Description SADDR session address SID Session i ...
- react router 4.0以上的路由应用
thead>tr>th{padding:8px;line-height:1.4285714;border-top:1px solid #ddd}.table>thead>tr& ...
- Tomcat 连接池详解
(转) JDBC 连接池 org.apache.tomcat.jdbc.pool 是Apache-Commons DBCP连接池的一种替换或备选方案. 那究竟为何需要一个新的连接池? 原因如下: Co ...
- Neo4j 第五篇:批量更新数据
相比图形数据的查询,Neo4j更新图形数据的速度较慢,通常情况下,Neo4j更新数据的工作流程是:每次数据更新都会执行一次数据库连接,打开一个事务,在事务中更新数据.当数据量非常大时,这种做法非常耗时 ...