洛谷 P3768 简单的数学题 解题报告
P3768 简单的数学题
题目描述
由于出题人懒得写背景了,题目还是简单一点好。
输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j)) \bmod p\),其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数。
刚才题面打错了,已修改
输入输出格式
输入格式:
一行两个整数\(p\)、\(n\)。
输出格式:
一行一个整数\((\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))\bmod p\)。
说明
对于\(20\%\)的数据,\(n \leq 1000\)。
对于\(30\%\)的数据,\(n \leq 5000\)。
对于\(60\%\)的数据,\(n \leq 10^6\),时限\(1s\)。
对于另外\(20\%\)的数据,\(n \leq 10^9\),时限\(3s\)。
对于最后\(20\%\)的数据,\(n \leq 10^{10}\),时限\(6s\)。
对于\(100\%\)的数据,\(5 \times 10^8 \leq p \leq 1.1 \times 10^9\)且\(p\)为质数。
从各种方向推推式子,你会差不多发现有
\]
\]
其中\(F(n)=\sum\limits_{i=1}^ni\)
然后上杜教筛设\(\mathbf f(n)=n^2\varphi(n)\),则有
\]
带进去杜教筛得到
\]
然后小学奥数一波算前缀和就行了
小心爆\(long \ long\)
Code:
#include <cstdio>
#include <unordered_map>
#define ll long long
const int N=5e6;
ll n,mod,phi[N+10],inv2,inv6;
int pri[N+10],ispri[N+10],cnt;
ll qp(ll d,ll k){ll re=1;while(k){if(k&1)re=re*d%mod;d=d*d%mod,k>>=1;}return re;}
ll f(ll x){x%=mod;return x*(x+1)%mod*inv2%mod;}
ll g(ll x){x%=mod;return x*(x+1)%mod*(2*x%mod+1)%mod*inv6%mod;}
void init()
{
phi[1]=1;
for(int i=2;i<=N;i++)
{
if(!ispri[i])
{
phi[i]=i-1;
pri[++cnt]=i;
}
for(int j=1;j<=cnt&&i*pri[j]<=N;j++)
{
ispri[i*pri[j]]=1;
if(i%pri[j]==0){phi[i*pri[j]]=phi[i]*pri[j]%mod;break;}
else phi[i*pri[j]]=phi[i]*(pri[j]-1)%mod;
}
}
for(int i=1;i<=N;i++)
phi[i]=(phi[i]*i%mod*i%mod+phi[i-1])%mod;
}
std::unordered_map <ll,ll> Phi;
ll calphi(ll n)
{
if(n<=N) return phi[n];
if(Phi.find(n)!=Phi.end()) return Phi[n];
ll ret=f(n)*f(n)%mod;
for(ll l=2,r;l<=n;l=r+1)
{
r=n/(n/l);
(ret-=(calphi(n/l)*(g(r)-g(l-1))%mod))%=mod;
}
ret=(ret%mod+mod)%mod;
return Phi[n]=ret;
}
int main()
{
scanf("%lld%lld",&mod,&n);
init();
ll ans=0;inv6=qp(6,mod-2);inv2=qp(2,mod-2);
for(ll l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
(ans+=f(n/l)*f(n/l)%mod*(calphi(r)-calphi(l-1))%mod)%=mod;
}
ans=(ans%mod+mod)%mod;
printf("%lld\n",ans);
return 0;
}
2018.11.26
洛谷 P3768 简单的数学题 解题报告的更多相关文章
- 洛谷P3768 简单的数学题解题报告
$$\begin{eqnarray}&\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\\&\sum_{d=1}^{n}\sum_{i=1}^{n}\su ...
- 【刷题】洛谷 P3768 简单的数学题
题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd ...
- 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...
- 洛谷 P3768 简单的数学题
https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...
- 洛谷P3768 简单的数学题
解: 神奇的一批......参观yyb巨神的博客. 大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积. 然后发现有个地方我们除法的除数是乘积,于是换 ...
- 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)
传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...
- 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...
- 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...
- 洛谷 P3768 简单的数学题 (莫比乌斯反演)
题意:求$(\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j))mod p$(p为质数,n<=1e10) 很显然,推式子. $\sum_{i=1}^{n}\sum_{j ...
随机推荐
- php-laravel安装与使用
1.框架作用 提供了一些主体功能,方便开发者快速开发 2.PHP框架 laravel ThinkPHP 3.首先要安装composer软件 1.作用 主要管理PH ...
- 逆向某停车app(原创)
最近一直在做python开发的事情,信息安全方面做得很少,也是"蛋蛋"的忧伤呀.今天有朋友请我帮忙,将一个app里的文字和图标替换一下,花了一下午和一晚上的时间搞了一下,主要是图标 ...
- python开发ftp服务器第一天(pyftpdlib)
学习了大约快一个月的python,现在开始有意识做一些项目.(我的新书<Python爬虫开发与项目实战>出版了,大家可以看一下样章) 据我了解,python现在更多的是用于自动化运维方面, ...
- perf + 火焰图用法 小结
要对新服务做性能测试,分析代码热点,初识perf,做下总结 perf + 火焰图用法 perf简介 Perf (Performance Event), Linux 系统原生提供的性能分析工具, 会返回 ...
- VR电竞游戏在英特尔®架构上的用户体验优化
作为人与虚拟世界之间的新型交互方式,VR 能够让用户在模拟现实中获得身临其境的感受.但是,鉴于 VR 的帧预算为每帧 11.1ms (90fps),实现实时渲染并不容易,需要对整个场景渲染两次(一只眼 ...
- 在Unity中使用带碰撞体的TiledMap
虽然最近Unity2018版本推出了自己的瓦片地图,但是这个瓦片地图有点BUG,在场景内把瓦片地图铺好做成预制体,动态生成的时候居然丢失了碰撞体,于是我决定还是使用Tiled软件绘制地图并使用Tile ...
- leetcode个人题解——#48 rotage image
思路:本题要求不能利用额外的二维数组实现旋转,所以重点在于弄清矩阵旋转的数学方法. 我的方法是,首先按照副对角线进行对称,然后按照水平中轴线进行对称即可. class Solution { publi ...
- 4.hive的外部表和内部表
1.外部表和内部表区别 创建表时:创建内部表时,会将数据移动到数据仓库指向的路径:若创建外部表,仅记录数据所在的路径, 不对数据的位置做任何改变. 删除表时:在删除表的时候,内部表的元数据和数据会被一 ...
- varnish squid nginx比较
linux运维中,web cache server方案的部署是一个很重要的环节,选择也有很多种比如:varnish.squid.nginx.下面就对当下常用的这几个web cache server做一 ...
- Scrum立会报告+燃尽图(十一月二十三日总第三十一次):界面修改及新页面添加
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2410 项目地址:https://git.coding.net/zhang ...