【BZOJ5248】【九省联考2018】一双木棋(搜索,哈希)

题面

BZOJ

Description

菲菲和牛牛在一块n行m列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手。棋局开始时,棋盘上没有任何棋子,

两人轮流在格子上落子,直到填满棋盘时结束。落子的规则是:一个格子可以落子当且仅当这个格子内没有棋子且

这个格子的左侧及上方的所有格子内都有棋子。

棋盘的每个格子上,都写有两个非负整数,从上到下第i行中从左到右第j列的格子上的两个整数记作Aij、Bij。在

游戏结束后,菲菲和牛牛会分别计算自己的得分:菲菲的得分是所有有黑棋的格子上的Aij之和,牛牛的得分是所

有有白棋的格子上的Bij的和。

菲菲和牛牛都希望,自己的得分减去对方的得分得到的结果最大。现在他们想知道,在给定的棋盘上,如果双方都

采用最优策略且知道对方会采用最优策略,那么,最终的结果如何

Input

第一行包含两个正整数n,m,保证n,m≤10。

接下来n行,每行m个非负整数,按从上到下从左到右的顺序描述每个格子上的

第一个非负整数:其中第i行中第j个数表示Aij。

接下来n行,每行m个非负整数,按从上到下从左到右的顺序描述每个格子上的

第二个非负整数:其中第i行中第j个数表示Bij

n, m ≤ 10 , Aij, Bij ≤ 100000

Output

输出一个整数,表示菲菲的得分减去牛牛的得分的结果。

Sample Input

2 3

2 7 3

9 1 2

3 7 2

2 3 1

Sample Output

2

题解

考虑一下所谓的两个人都是走最优策略

也就是对于第一个人,

它一定从当前局面可以到达的所有局面中,选择一个最大的走。

第二个人一定会从当前局面所有可以到达的局面中,选择一个最小的走。

(这就是所谓的\(min-max\)搜索???或者叫对抗搜索??)

考虑一下所有的状态,一定是一个从上往下的阶梯型

因为\(n,m<=10\)

所以我们可以用一个\(n\)位的\(m+1\)进制数把当前下完的轮廓给哈希一下。

那么,对于一个局面,我们可以做记忆化搜索,

我们只需要根据局面当前下子的是谁,决定这个状态是最大还是最小。这样用\(map\)压下当前所有状态,直接搜索即可。。

要是让我考我肯定做不出来

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 15
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
const int Base=11;
map<ll,int> M;
int ln[MAX],n,m;
int A[MAX][MAX],B[MAX][MAX];
ll Hash(){ll ret=0;for(int i=1;i<=n;++i)ret=ret*Base+ln[i];return ret;}
void UnHash(ll st){for(int i=n;i;--i)ln[i]=st%Base,st/=Base;}
int Next(){int ret=0;for(int i=1;i<=n;++i)ret+=ln[i];return ret&1;}
int dfs(ll st)
{
if(M.count(st))return M[st];
UnHash(st);
int opt=Next(),ret=opt?1e9:-1e9;
for(int i=1;i<=n;++i)
if(ln[i-1]>ln[i])
{
ln[i]++;
ll now=Hash();
opt?ret=min(ret,dfs(now)-B[i][ln[i]]):ret=max(ret,dfs(now)+A[i][ln[i]]);
ln[i]--;
}
return M[st]=ret;
}
int main()
{
n=read();ln[0]=m=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
A[i][j]=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
B[i][j]=read();
ll all=0;
for(int i=1;i<=n;++i)all=all*Base+m;
M[all]=0;
dfs(0);
printf("%d\n",M[0]);
return 0;
}

【BZOJ5248】【九省联考2018】一双木棋(搜索,哈希)的更多相关文章

  1. [BZOJ5248][九省联考2018]一双木棋(连通性DP,对抗搜索)

    5248: [2018多省省队联测]一双木棋 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 43  Solved: 34[Submit][Status ...

  2. 洛谷 P4363 [九省联考2018]一双木棋chess 解题报告

    P4363 [九省联考2018]一双木棋chess 题目描述 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落 ...

  3. BZOJ5248:[九省联考2018]一双木棋——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5248 https://www.luogu.org/problemnew/show/P4363#su ...

  4. [九省联考2018]一双木棋chess——搜索+哈希

    题目:bzoj5248 https://www.lydsy.com/JudgeOnline/problem.php?id=5248 洛谷P4363 https://www.luogu.org/prob ...

  5. Luogu4363 [九省联考2018]一双木棋chess 【状压DP】【进制转换】

    题目分析: 首先跑个暴力,求一下有多少种状态,发现只有18xxxx种,然后每个状态有10的转移,所以复杂度大约是200w,然后利用进制转换的技巧求一下每个状态的十进制码就行了. 代码: #includ ...

  6. luogu P4363 [九省联考2018]一双木棋chess

    传送门 对抗搜索都不会,我真是菜死了qwq 首先根据题目条件,可以发现从上到下每一行的棋子数是单调不增的,然后n m都比较小,如果把状态搜出来,可以发现合法状态并不多,所以可以用一个11进制数表示状态 ...

  7. [九省联考2018]一双木棋chess

    题解: 水题吧 首先很显然的是状压或者搜索 考虑一下能不能状压吧 这个东西一定是长成三角形的样子的 所以是可以状压的 相邻两位之间有几个0代表他们差几 这样最多会有2n 然后就可以转移了 由于之前对博 ...

  8. 【题解】Luogu P4363 [九省联考2018]一双木棋chess

    原题传送门 这道题珂以轮廓线dp解决 经过推导,我们珂以发现下一行的棋子比上一行的棋子少(或等于),而且每一行中的棋子都是从左向右依次排列(从头开始,中间没有空隙) 所以每下完一步棋,棋盘的一部分是有 ...

  9. P4363 [九省联考2018]一双木棋chess

    思路 容易发现只能在轮廓线的拐点处落子,所以棋盘的状态可以用一个n+m长度的二进制数表示 转移就是10变成01 代码 #include <cstdio> #include <algo ...

  10. [九省联考2018] 一双木棋 chess

    Description 菲菲和牛牛在一块n 行m 列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可 ...

随机推荐

  1. 【Unity3d】ScriptableObject的简单用法

      ScriptableObject非常适合小数量的游戏数值. 使用ScriptableObject的时候需要注意,生成ScriptableObject数据文件需要自己写Editor代码实现. 大概的 ...

  2. MyBatis.Net 配置

    假设我们现在有这样的需求,要对学生信息进行管理 学生表有要以下要求 字段名称 数据类型 说明 stuNo 字符 学号,该列必填,为主键递增 stuName 字符 学生姓名,该列必填,要考虑姓氏可能是两 ...

  3. 在tomcat5中发布项目时,用IP地址+端口不能访问项目,而用localhost加端口时可以访问成功

    最近在开发项目中,遇到的一个问题是: 在 tomcat中发布一个web项目,但是发布成功后,只能用http://localhost:8080/fm访问项目,不能用 http://127.0.0.1:8 ...

  4. 180718-jar包执行传参使用小结

    jar包执行时传参的使用姿势 虽说我们现在大多不太直接使用jar包运行方式,目前比较主流的是将自己的服务丢在某个容器中(如tomcat,jetty等)运行,比如我之前所属的电商公司,就是将项目打包为w ...

  5. Selenium2+python自动化-文件上传

    前言 文件上传是web页面上很常见的一个功能,自动化成功中操作起来却不是那么简单. 一般分两个场景:一种是input标签,这种可以用selenium提供的send_keys()方法轻松解决:另外一种非 ...

  6. cmake-index-3.11.4机翻

    index next | CMake » git-stage git-master latest release 3.13 3.12 3.11.4 3.10 3.9 3.8 3.7 3.6 3.5 3 ...

  7. 城联数据TSM技术方案起底

    近日,城联数据有限公司与中国电信签订了<基于NFC技术的公交业务的合作协议>.双方基于NFC技术开展互联互通城市公交卡业务合作,实现符合住房和城乡建设部城市公用事业互联互通卡系列标准的移动 ...

  8. 复利计算器4.0之再遇JUnit

    复利计算器4.0之再遇JUnit 前言    虽然之前的复利计算器版本已经尝试过使用JUnit单元测试,但由于没有系统性地学习过JUnit的使用,用得并不好,主要问题表现在测试的场景太少,并没有达到测 ...

  9. 四则运算——单元测试(测试方法:Right-BICEP )

    一.测试的具体部位 Right-结果是否正确? B-是否所有的边界条件都是正确的? I-能查一下反向关联吗? C-能用其他手段交叉检查一下结果吗? E-你是否可以强制错误条件发生? P-是否满足性能要 ...

  10. java包名命名规范

    Java的包名都有小写单词组成,类名首字母大写:包的路径符合所开发的 系统模块的 定义,比如生产对生产,物资对物资,基础类对基础类.以便看了包名就明白是哪个模块,从而直接到对应包里找相应的实现. 由于 ...