QuantLib 金融计算——数学工具之优化器
如果未做特别说明,文中的程序都是 Python3 代码。
QuantLib 金融计算——数学工具之优化器
载入模块
import QuantLib as ql
import scipy
print(ql.__version__)
1.12
概述
在量化金融的模型校准过程中,最重要的工具是对函数 \(f : R^n \to R\) 的优化器。通常遇到的最优化问题是一个最小二乘问题。例如,寻找一个模型的参数使得某些损失函数最小化。
quantlib-python 中的最优化计算委托给 Optimizer
类,用户需要配置合适的参数以描述最优化问题,需要注意的是 Optimizer
对象默认求解的是某个函数“最小化”问题。
Optimizer
Optimizer
类的构造函数不接受参数,求解最优化问题的方式也非常简单,仅需调用 solve
函数即可:
solve(function,
c,
m,
e,
iv)
function
:函数或函数对象,返回一个浮点数,所接受的参数是若干独立的浮点数;c
:Constraint
对象,描述优化问题的约束条件;m
:OptimizationMethod
对象,优化算法引擎;e
:EndCriteria
对象,描述优化问题的终止条件;iv
:Array
对象,优化计算的初始值。
solve
函数返回一个 Array
对象,存储找到的最小值点。
Constraint
quantlib-python 提供的具体约束条件均继承自 Constraint
类,有如下几种:
NoConstraint
:无约束PositiveConstraint
:要求所有参数为正数BoundaryConstraint
:要求所有参数在某个区间内CompositeConstraint
:要求所有参数同时满足两个约束条件NonhomogeneousBoundaryConstraint
:对每个参数分别约束,要求其在某个区间内
OptimizationMethod
quantlib-python 提供的具体优化算法均继承自 OptimizationMethod
类,有如下几种:
LevenbergMarquardt
:Levenberg-Marquardt 算法,实现基于 MINPACK;Simplex
:单纯形法;ConjugateGradient
:共轭梯度法;SteepestDescent
:最速下降法;BFGS
:Broyden-Fletcher-Goldfarb-Shanno 算法;DifferentialEvolution
:微分进化算法;GaussianSimulatedAnnealing
:高斯模拟退火算法;MirrorGaussianSimulatedAnnealing
:镜像高斯模拟退火算法;LogNormalSimulatedAnnealing
:对数高斯模拟退火算法。
EndCriteria
最优化计算通常是一个迭代过程,我们需要定义一个终止条件以引导最优化计算结束,否则可能一直计算下去。终止条件由 EndCriteria
类参数化,其构造函数如下
EndCriteria(maxIteration,
maxStationaryStateIterations,
rootEpsilon,
functionEpsilon,
gradientNormEpsilon)
maxIteration
:整数,最大迭代次数;maxStationaryStateIterations
:整数,稳定点(函数值和根同时稳定)的最大迭代次数;rootEpsilon
:浮点数,当前根与最新根的绝对差小于rootEpsilon
时停止计算;functionEpsilon
:浮点数,当前函数值与最新函数值的绝对差小于functionEpsilon
时停止计算;gradientNormEpsilon
:浮点数,当前梯度与最新梯度差的范数小于gradientNormEpsilon
时停止计算;
注意,对于每种优化器来讲,并不是所有参数多是必须的。
示例
Rosenbrock 问题
我们以 Rosenbrock 函数(也简称为香蕉函数)为例测试优化器,这是一个经典的优化问题。函数定义如下:
\]
最小值点落在 \((x,y)=(1, 1)\),此时的函数值 \(f(x,y)=0\)。
首先定义 Rosenbrock 函数,注意,每个参数是独立的浮点数。
def RosenBrockFunction(x0, x1):
res = (1 - x0) * (1 - x0) + 100.0 * (x1 - x0 * x0) * (x1 - x0 * x0)
return res
接着,配置优化器,并测试 Simplex
和 ConjugateGradient
算法。初始值设定为 \((x, y) = (0.1, 0.1)\),最优化类型为“无约束”的。
例子 1
def testOptimizer1():
maxIterations = 1000
minStatIterations = 100
rootEpsilon = 1e-8
functionEpsilon = 1e-9
gradientNormEpsilon = 1e-5
myEndCrit = ql.EndCriteria(
maxIterations,
minStatIterations,
rootEpsilon,
functionEpsilon,
gradientNormEpsilon)
constraint = ql.NoConstraint()
solver1 = ql.Simplex(0.1)
solver2 = ql.ConjugateGradient()
minimize = ql.Optimizer()
min1 = minimize.solve(
function=RosenBrockFunction,
c=constraint,
m=solver1,
e=myEndCrit,
iv=ql.Array(2, 0.1))
min2 = minimize.solve(
function=RosenBrockFunction,
c=constraint,
m=solver2,
e=myEndCrit,
iv=ql.Array(2, 0.1))
print('{0:<30}{1}'.format('Root Simplex', min1))
print('{0:<30}{1}'.format('Root ConjugateGradient', min2))
print('{0:<40}{1}'.format(
'Min F Value Simplex',
RosenBrockFunction(min1[0], min1[1])))
print('{0:<40}{1}'.format(
'Min F Value ConjugateGradient',
RosenBrockFunction(min2[0], min2[1])))
testOptimizer1()
Root Simplex [ 1; 1 ]
Root ConjugateGradient [ 0.998904; 0.995025 ]
Min F Value Simplex 2.929205541302239e-17
Min F Value ConjugateGradient 0.0007764961476745887
校准问题
下面虚拟一个模型校准问题。假设已知 4 个看涨期权的价格 \(C_1 , C_2 , C_3 , C_4\),以及对应的敲定价 \(K_i\),未知量是股票价格 \(S_0\) 和波动率 \(\sigma\),通过解决下面的最小二乘问题来求解出 \((\sigma, S_0)\),
\]
首先定义损失函数(函数对象),
class CallProblemFunction(object):
def __init__(self,
rd, rf, tau, phi,
K1, K2, K3, K4,
C1, C2, C3, C4):
self.rd_ = rd
self.rf_ = rf
self.tau_ = tau
self.phi_ = phi
self.K1_ = K1
self.K2_ = K2
self.K3_ = K3
self.K4_ = K4
self.C1_ = C1
self.C2_ = C2
self.C3_ = C3
self.C4_ = C4
@staticmethod
def blackScholesPrice(spot, strike,
rd, rf,
vol, tau,
phi):
domDf = scipy.exp(-rd * tau)
forDf = scipy.exp(-rf * tau)
fwd = spot * forDf / domDf
stdDev = vol * scipy.sqrt(tau)
dp = (scipy.log(fwd / strike) + 0.5 * stdDev * stdDev) / stdDev
dm = (scipy.log(fwd / strike) - 0.5 * stdDev * stdDev) / stdDev
res = phi * domDf * (fwd * norm.cdf(phi * dp) - strike * norm.cdf(phi * dm))
return res
def values(self,
x0,
x1):
res = ql.Array(4)
res[0] = self.blackScholesPrice(
x0, self.K1_, self.rd_, self.rf_, x1, self.tau_, self.phi_) - self.C1_
res[1] = self.blackScholesPrice(
x0, self.K2_, self.rd_, self.rf_, x1, self.tau_, self.phi_) - self.C2_
res[2] = self.blackScholesPrice(
x0, self.K3_, self.rd_, self.rf_, x1, self.tau_, self.phi_) - self.C3_
res[3] = self.blackScholesPrice(
x0, self.K4_, self.rd_, self.rf_, x1, self.tau_, self.phi_) - self.C4_
return res
def __call__(self,
x0,
x1):
tmpRes = self.values(x0, x1)
res = tmpRes[0] * tmpRes[0]
res += tmpRes[1] * tmpRes[1]
res += tmpRes[2] * tmpRes[2]
res += tmpRes[3] * tmpRes[3]
return res
例子 2
def testOptimizer2():
spot = 98.51
vol = 0.134
K1 = 87.0
K2 = 96.0
K3 = 103.0
K4 = 110.0
rd = 0.002
rf = 0.01
phi = 1
tau = 0.6
C1 = CallProblemFunction.blackScholesPrice(
spot, K1, rd, rf, vol, tau, phi)
C2 = CallProblemFunction.blackScholesPrice(
spot, K2, rd, rf, vol, tau, phi)
C3 = CallProblemFunction.blackScholesPrice(
spot, K3, rd, rf, vol, tau, phi)
C4 = CallProblemFunction.blackScholesPrice(
spot, K4, rd, rf, vol, tau, phi)
optFunc = CallProblemFunction(
rd, rf, tau, phi, K1, K2, K3, K4, C1, C2, C3, C4)
maxIterations = 1000
minStatIterations = 100
rootEpsilon = 1e-5
functionEpsilon = 1e-5
gradientNormEpsilon = 1e-5
myEndCrit = ql.EndCriteria(
maxIterations,
minStatIterations,
rootEpsilon,
functionEpsilon,
gradientNormEpsilon)
startVal = ql.Array(2)
startVal[0] = 80.0
startVal[1] = 0.20
constraint = ql.NoConstraint()
solver = ql.BFGS()
minimize = ql.Optimizer()
min1 = minimize.solve(
function=optFunc,
c=constraint,
m=solver,
e=myEndCrit,
iv=startVal)
print('Root', min1)
print('Min Function Value', optFunc(min1[0], min1[1]))
Root [ 98.51; 0.134 ]
Min Function Value 5.979965971506814e-22
QuantLib 金融计算——数学工具之优化器的更多相关文章
- QuantLib 金融计算——数学工具之求解器
目录 QuantLib 金融计算--数学工具之求解器 概述 调用方式 非 Newton 算法(不需要导数) Newton 算法(需要导数) 如果未做特别说明,文中的程序都是 Python3 代码. Q ...
- QuantLib 金融计算——数学工具之数值积分
目录 QuantLib 金融计算--数学工具之数值积分 概述 常见积分方法 高斯积分 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之数值积分 载入模 ...
- QuantLib 金融计算——数学工具之插值
目录 QuantLib 金融计算--数学工具之插值 概述 一维插值方法 二维插值方法 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之插值 载入模块 ...
- QuantLib 金融计算——数学工具之随机数发生器
目录 QuantLib 金融计算--数学工具之随机数发生器 概述 伪随机数 正态分布(伪)随机数 拟随机数 HaltonRsg SobolRsg 两类随机数的收敛性比较 如果未做特别说明,文中的程序都 ...
- QuantLib 金融计算
我的微信:xuruilong100 <Implementing QuantLib>译后记 QuantLib 金融计算 QuantLib 入门 基本组件之 Date 类 基本组件之 Cale ...
- QuantLib 金融计算——高级话题之模拟跳扩散过程
目录 QuantLib 金融计算--高级话题之模拟跳扩散过程 跳扩散过程 模拟算法 面临的问题 "脏"的方法 "干净"的方法 实现 示例 参考文献 如果未做特别 ...
- QuantLib 金融计算——基本组件之 Currency 类
目录 QuantLib 金融计算--基本组件之 Currency 类 概述 构造函数 成员函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 Cu ...
- QuantLib 金融计算——收益率曲线之构建曲线(2)
目录 QuantLib 金融计算--收益率曲线之构建曲线(2) YieldTermStructure 问题描述 Piecewise** 分段收益率曲线的原理 Piecewise** 对象的构造 Fit ...
- QuantLib 金融计算——随机过程之概述
目录 QuantLib 金融计算--随机过程之概述 框架 用法与接口 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--随机过程之概述 载入模块 import Q ...
随机推荐
- C#多线程数据分布加载
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- mybatis小工具
1.其实也不算是针对mybatis的其他都可以用 lombok 2.mybatis的小插件,可以快速定位到mapper.xml和接口之间 mybatisx
- Under-sampling
Under sampling When the signal frequency is high, and the tester frequency can’t catch the signal ...
- Please do not register multiple Pages in undefined.js 小程序报错的几种解决方案
Wed Jun 27 2018 09:25:43 GMT+0800 (中国标准时间) Page 注册错误,Please do not register multiple Pages in undefi ...
- 09 Finding a Motif in DNA
Problem Given two strings ss and tt, tt is a substring of ss if tt is contained as a contiguous coll ...
- linux 进程通信之 管道和FIFO
进程间通信:IPC概念 IPC:Interprocess Communication,通过内核提供的缓冲区进行数据交换的机制. IPC通信的方式: pipe:管道(最简单) fifo:有名管道 mma ...
- EJB3.0 EJB开发消息驱动bean
(7)EJB3.0 EJB开发消息驱动bean JMS 一: Java消息服务(Java Message Service) 二:jms中的消息 消息传递系统的中心就是消息.一条 Message 由三个 ...
- Buffer Pool--SQL Server:Buffer Manager 对象
--============================================================== --参考链接:http://technet.microsoft.com ...
- 10-06 Linux的基本命令以及一些简单的通配符说明
Shell的通配符 主要用于模式匹配,如:文件名匹配,路径名搜索,字符查找等.常用的有:'*','?','[]' '*':代表任意长度的字串. '?':代表单个任意字符 '[]':代表模式串匹配的字符 ...
- ADO.NET操作SQL Server:数据库操作类(未封装)
1.添加数据 /// <summary> /// 添加数据 /// </summary> /// <param name="newEntity"> ...