QuantLib 金融计算——数学工具之优化器
如果未做特别说明,文中的程序都是 Python3 代码。
QuantLib 金融计算——数学工具之优化器
载入模块
import QuantLib as ql
import scipy
print(ql.__version__)
1.12
概述
在量化金融的模型校准过程中,最重要的工具是对函数 \(f : R^n \to R\) 的优化器。通常遇到的最优化问题是一个最小二乘问题。例如,寻找一个模型的参数使得某些损失函数最小化。
quantlib-python 中的最优化计算委托给 Optimizer 类,用户需要配置合适的参数以描述最优化问题,需要注意的是 Optimizer 对象默认求解的是某个函数“最小化”问题。
Optimizer
Optimizer 类的构造函数不接受参数,求解最优化问题的方式也非常简单,仅需调用 solve 函数即可:
solve(function,
c,
m,
e,
iv)
function:函数或函数对象,返回一个浮点数,所接受的参数是若干独立的浮点数;c:Constraint对象,描述优化问题的约束条件;m:OptimizationMethod对象,优化算法引擎;e:EndCriteria对象,描述优化问题的终止条件;iv:Array对象,优化计算的初始值。
solve 函数返回一个 Array 对象,存储找到的最小值点。
Constraint
quantlib-python 提供的具体约束条件均继承自 Constraint 类,有如下几种:
NoConstraint:无约束PositiveConstraint:要求所有参数为正数BoundaryConstraint:要求所有参数在某个区间内CompositeConstraint:要求所有参数同时满足两个约束条件NonhomogeneousBoundaryConstraint:对每个参数分别约束,要求其在某个区间内
OptimizationMethod
quantlib-python 提供的具体优化算法均继承自 OptimizationMethod 类,有如下几种:
LevenbergMarquardt:Levenberg-Marquardt 算法,实现基于 MINPACK;Simplex:单纯形法;ConjugateGradient:共轭梯度法;SteepestDescent:最速下降法;BFGS:Broyden-Fletcher-Goldfarb-Shanno 算法;DifferentialEvolution:微分进化算法;GaussianSimulatedAnnealing:高斯模拟退火算法;MirrorGaussianSimulatedAnnealing:镜像高斯模拟退火算法;LogNormalSimulatedAnnealing:对数高斯模拟退火算法。
EndCriteria
最优化计算通常是一个迭代过程,我们需要定义一个终止条件以引导最优化计算结束,否则可能一直计算下去。终止条件由 EndCriteria 类参数化,其构造函数如下
EndCriteria(maxIteration,
maxStationaryStateIterations,
rootEpsilon,
functionEpsilon,
gradientNormEpsilon)
maxIteration:整数,最大迭代次数;maxStationaryStateIterations:整数,稳定点(函数值和根同时稳定)的最大迭代次数;rootEpsilon:浮点数,当前根与最新根的绝对差小于rootEpsilon时停止计算;functionEpsilon:浮点数,当前函数值与最新函数值的绝对差小于functionEpsilon时停止计算;gradientNormEpsilon:浮点数,当前梯度与最新梯度差的范数小于gradientNormEpsilon时停止计算;
注意,对于每种优化器来讲,并不是所有参数多是必须的。
示例
Rosenbrock 问题
我们以 Rosenbrock 函数(也简称为香蕉函数)为例测试优化器,这是一个经典的优化问题。函数定义如下:
\]
最小值点落在 \((x,y)=(1, 1)\),此时的函数值 \(f(x,y)=0\)。
首先定义 Rosenbrock 函数,注意,每个参数是独立的浮点数。
def RosenBrockFunction(x0, x1):
res = (1 - x0) * (1 - x0) + 100.0 * (x1 - x0 * x0) * (x1 - x0 * x0)
return res
接着,配置优化器,并测试 Simplex 和 ConjugateGradient 算法。初始值设定为 \((x, y) = (0.1, 0.1)\),最优化类型为“无约束”的。
例子 1
def testOptimizer1():
maxIterations = 1000
minStatIterations = 100
rootEpsilon = 1e-8
functionEpsilon = 1e-9
gradientNormEpsilon = 1e-5
myEndCrit = ql.EndCriteria(
maxIterations,
minStatIterations,
rootEpsilon,
functionEpsilon,
gradientNormEpsilon)
constraint = ql.NoConstraint()
solver1 = ql.Simplex(0.1)
solver2 = ql.ConjugateGradient()
minimize = ql.Optimizer()
min1 = minimize.solve(
function=RosenBrockFunction,
c=constraint,
m=solver1,
e=myEndCrit,
iv=ql.Array(2, 0.1))
min2 = minimize.solve(
function=RosenBrockFunction,
c=constraint,
m=solver2,
e=myEndCrit,
iv=ql.Array(2, 0.1))
print('{0:<30}{1}'.format('Root Simplex', min1))
print('{0:<30}{1}'.format('Root ConjugateGradient', min2))
print('{0:<40}{1}'.format(
'Min F Value Simplex',
RosenBrockFunction(min1[0], min1[1])))
print('{0:<40}{1}'.format(
'Min F Value ConjugateGradient',
RosenBrockFunction(min2[0], min2[1])))
testOptimizer1()
Root Simplex [ 1; 1 ]
Root ConjugateGradient [ 0.998904; 0.995025 ]
Min F Value Simplex 2.929205541302239e-17
Min F Value ConjugateGradient 0.0007764961476745887
校准问题
下面虚拟一个模型校准问题。假设已知 4 个看涨期权的价格 \(C_1 , C_2 , C_3 , C_4\),以及对应的敲定价 \(K_i\),未知量是股票价格 \(S_0\) 和波动率 \(\sigma\),通过解决下面的最小二乘问题来求解出 \((\sigma, S_0)\),
\]
首先定义损失函数(函数对象),
class CallProblemFunction(object):
def __init__(self,
rd, rf, tau, phi,
K1, K2, K3, K4,
C1, C2, C3, C4):
self.rd_ = rd
self.rf_ = rf
self.tau_ = tau
self.phi_ = phi
self.K1_ = K1
self.K2_ = K2
self.K3_ = K3
self.K4_ = K4
self.C1_ = C1
self.C2_ = C2
self.C3_ = C3
self.C4_ = C4
@staticmethod
def blackScholesPrice(spot, strike,
rd, rf,
vol, tau,
phi):
domDf = scipy.exp(-rd * tau)
forDf = scipy.exp(-rf * tau)
fwd = spot * forDf / domDf
stdDev = vol * scipy.sqrt(tau)
dp = (scipy.log(fwd / strike) + 0.5 * stdDev * stdDev) / stdDev
dm = (scipy.log(fwd / strike) - 0.5 * stdDev * stdDev) / stdDev
res = phi * domDf * (fwd * norm.cdf(phi * dp) - strike * norm.cdf(phi * dm))
return res
def values(self,
x0,
x1):
res = ql.Array(4)
res[0] = self.blackScholesPrice(
x0, self.K1_, self.rd_, self.rf_, x1, self.tau_, self.phi_) - self.C1_
res[1] = self.blackScholesPrice(
x0, self.K2_, self.rd_, self.rf_, x1, self.tau_, self.phi_) - self.C2_
res[2] = self.blackScholesPrice(
x0, self.K3_, self.rd_, self.rf_, x1, self.tau_, self.phi_) - self.C3_
res[3] = self.blackScholesPrice(
x0, self.K4_, self.rd_, self.rf_, x1, self.tau_, self.phi_) - self.C4_
return res
def __call__(self,
x0,
x1):
tmpRes = self.values(x0, x1)
res = tmpRes[0] * tmpRes[0]
res += tmpRes[1] * tmpRes[1]
res += tmpRes[2] * tmpRes[2]
res += tmpRes[3] * tmpRes[3]
return res
例子 2
def testOptimizer2():
spot = 98.51
vol = 0.134
K1 = 87.0
K2 = 96.0
K3 = 103.0
K4 = 110.0
rd = 0.002
rf = 0.01
phi = 1
tau = 0.6
C1 = CallProblemFunction.blackScholesPrice(
spot, K1, rd, rf, vol, tau, phi)
C2 = CallProblemFunction.blackScholesPrice(
spot, K2, rd, rf, vol, tau, phi)
C3 = CallProblemFunction.blackScholesPrice(
spot, K3, rd, rf, vol, tau, phi)
C4 = CallProblemFunction.blackScholesPrice(
spot, K4, rd, rf, vol, tau, phi)
optFunc = CallProblemFunction(
rd, rf, tau, phi, K1, K2, K3, K4, C1, C2, C3, C4)
maxIterations = 1000
minStatIterations = 100
rootEpsilon = 1e-5
functionEpsilon = 1e-5
gradientNormEpsilon = 1e-5
myEndCrit = ql.EndCriteria(
maxIterations,
minStatIterations,
rootEpsilon,
functionEpsilon,
gradientNormEpsilon)
startVal = ql.Array(2)
startVal[0] = 80.0
startVal[1] = 0.20
constraint = ql.NoConstraint()
solver = ql.BFGS()
minimize = ql.Optimizer()
min1 = minimize.solve(
function=optFunc,
c=constraint,
m=solver,
e=myEndCrit,
iv=startVal)
print('Root', min1)
print('Min Function Value', optFunc(min1[0], min1[1]))
Root [ 98.51; 0.134 ]
Min Function Value 5.979965971506814e-22
QuantLib 金融计算——数学工具之优化器的更多相关文章
- QuantLib 金融计算——数学工具之求解器
目录 QuantLib 金融计算--数学工具之求解器 概述 调用方式 非 Newton 算法(不需要导数) Newton 算法(需要导数) 如果未做特别说明,文中的程序都是 Python3 代码. Q ...
- QuantLib 金融计算——数学工具之数值积分
目录 QuantLib 金融计算--数学工具之数值积分 概述 常见积分方法 高斯积分 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之数值积分 载入模 ...
- QuantLib 金融计算——数学工具之插值
目录 QuantLib 金融计算--数学工具之插值 概述 一维插值方法 二维插值方法 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之插值 载入模块 ...
- QuantLib 金融计算——数学工具之随机数发生器
目录 QuantLib 金融计算--数学工具之随机数发生器 概述 伪随机数 正态分布(伪)随机数 拟随机数 HaltonRsg SobolRsg 两类随机数的收敛性比较 如果未做特别说明,文中的程序都 ...
- QuantLib 金融计算
我的微信:xuruilong100 <Implementing QuantLib>译后记 QuantLib 金融计算 QuantLib 入门 基本组件之 Date 类 基本组件之 Cale ...
- QuantLib 金融计算——高级话题之模拟跳扩散过程
目录 QuantLib 金融计算--高级话题之模拟跳扩散过程 跳扩散过程 模拟算法 面临的问题 "脏"的方法 "干净"的方法 实现 示例 参考文献 如果未做特别 ...
- QuantLib 金融计算——基本组件之 Currency 类
目录 QuantLib 金融计算--基本组件之 Currency 类 概述 构造函数 成员函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 Cu ...
- QuantLib 金融计算——收益率曲线之构建曲线(2)
目录 QuantLib 金融计算--收益率曲线之构建曲线(2) YieldTermStructure 问题描述 Piecewise** 分段收益率曲线的原理 Piecewise** 对象的构造 Fit ...
- QuantLib 金融计算——随机过程之概述
目录 QuantLib 金融计算--随机过程之概述 框架 用法与接口 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--随机过程之概述 载入模块 import Q ...
随机推荐
- myeclipse下对tomcat项目进行debug断点调试
对于eclipse或myeclipse调试J2SE项目或小应用进行断点调试,大家都不陌生,只要设置断点,debug运行就OK了.但是如果是web项目,而项目是在容器中运行的,比如tomcat,resi ...
- Ansible 笔记 (2) - Ad-hoc 命令
先使用 ansible-doc 获取帮助文档 [root@localhost ~]# ansible-doc ping > PING (/usr/lib/python2.7/site-packa ...
- 测试用Word2007发布博客文章
目前大部分的博客作者在用Word写博客这件事情上都会遇到以下3个痛点: 1.所有博客平台关闭了文档发布接口,用户无法使用Word,Windows Live Writer等工具来发布博客.使用Word写 ...
- 18-11-03 Scrum Meeting 6
1. 会议照片 2. 工作记录 完成的工作 配置页面 实现中译英选择题和英译中选择题的查询接口 整理文档 完成一个网站的图片爬取 计划的工作 完善配置页面功能 补充另一个网站的图片爬取 代码整理测试 ...
- WINSOCK网络函数
1. 头文件及库文件 头文件:WINSOCK2.H 库:WS2_32.LIB库 如果是在WINCE中,不支持SOCK2,所以: 头文件:WINSOCK.H 库:WSOCK32.LIB 如果从MSWSO ...
- Android-MediaPlayer-视频频播放-异步准备
上两篇博客,Android-MediaPlayer-音频播放-普通准备,Android-MediaPlayer-音频播放-异步准备,主要是讲解了音频(.mp3文件)音乐
- 转:Entity FrameWork利用Database.SqlQuery<T>执行存储过程并返回参数
public IEnumerable<Statistic> GetStatistics(IEnumerable<Guid> itemIds) { var ctx = new D ...
- 【转】不用软件,解压Win8/Win8.1的install.wim文件
今天用好压解压Windows 8.1的install.wim文件,居然提示文件损坏,换了7Z仍然如此:其实文件是好的.只不过这些软件暂时不支持罢了,还好可以用dism命令来手动完成. 一.检查镜像版本 ...
- layou split 属性
layou split:true - 显示侧分栏
- struts1.x和struts2.x之间的一些区别
转载自http://blog.csdn.net/john2522/article/details/7436307/ struts2不是struts1的升级,而是继承的webwork的血统,它吸收了st ...