STM32(5)——通用定时器基本定时器
1、STM32的Timer简介
STM32中一共有11个定时器,其中2个高级控制定时器,4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。
其中系统嘀嗒定时器是前文中所描述的SysTick,看门狗定时器以后再详细研究。今天主要是研究剩下的8个定时器。
定时器 |
计数器分辨率 |
计数器类型 |
预分频系数 |
产生DMA请求 |
捕获/比较通道 |
互补输出 |
TIM1 TIM8 |
16位 |
向上,向下,向上/向下 |
1-65536之间的任意数 |
可以 |
4 |
有 |
TIM2 TIM3 TIM4 TIM5 |
16位 |
向上,向下,向上/向下 |
1-65536之间的任意数 |
可以 |
4 |
没有 |
TIM6 TIM7 |
16位 |
向上 |
1-65536之间的任意数 |
可以 |
0 |
没有 |
2、普通定时器TIM2-TIM5
其中TIM1和TIM8是能够产生3对PWM互补输出的高级定时器,常用于三相电机的驱动,时钟由APB2的输出产生。TIM2-TIM5是普通定时器,TIM6和TIM7是基本定时器,其时钟由APB1输出产生。今天就从最简单的开始学习起,也就是TIM2-TIM5普通定时器的定时功能。
2.1 时钟来源
计数器时钟可以由下列时钟源提供:
内部时钟(CK_INT)
外部时钟模式1:外部输入脚(TIx)
外部时钟模式2:外部触发输入(ETR)
内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。
由于今天的学习是最基本的定时功能,所以采用内部时钟。TIM2-TIM5的时钟不是直接来自于APB1,而是来自于输入为APB1的一个倍频器。
这个倍频器的作用是:
当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;
当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作用,定时器的时钟频率等于APB1的频率的2倍。
通过倍频器给定时器时钟的好处是:
APB1不但要给TIM2-TIM5提供时钟,还要为其他的外设提供时钟;
设置这个倍频器可以保证在其他外设使用较低时钟频率时,TIM2-TIM5仍然可以得到较高的时钟频率。
2.2 计数器模式
TIM2-TIM5可以由向上计数、向下计数、向上向下双向计数。
向上计数模式中,计数器从0计数到自动加载值(TIMx_ARR计数器内容),然后重新从0开始计数并且产生一个计数器溢出事件。在向下模式中,计数器从自动装入的值(TIMx_ARR)开始向下计数到0,然后从自动装入的值重新开始,并产生一个计数器向下溢出事件。而中央对齐模式(向上/向下计数)是计数器从0开始计数到自动装入的值-1,产生一个计数器溢出事件,然后向下计数到1并且产生一个计数器溢出事件;然后再从0开始重新计数。
2.3 编程步骤
- 配置系统时钟;
- 配置NVIC;
- 配置GPIO;
- 配置TIMER;
其中,前3项在前面的笔记中已经给出,在此就不再赘述了。第4项配置TIMER有如下配置:
- 利用TIM_DeInit()函数将Timer设置为默认缺省值;
- TIM_InternalClockConfig()选择TIMx来设置内部时钟源;
- TIM_Perscaler来设置预分频系数;
- TIM_ClockDivision来设置时钟分割;
- TIM_CounterMode来设置计数器模式;
- TIM_Period来设置自动装入的值
- TIM_ARRPerloadConfig()来设置是否使用预装载缓冲器
- TIM_ITConfig()来开启TIMx的中断
其中3 - 6 步骤中的参数由TIM_TimerBaseInitTypeDef结构体给出。
步骤 3 中的预分频系数用来确定TIMx所使用的时钟频率,具体计算方法为:CK_INT/(TIM_Perscaler+1)。CK_INT是内部时钟源的频率,是根据2.1中所描述的APB1的倍频器送出的时钟,TIM_Perscaler是用户设定的预分频系数,其值范围是从0 – 65535。
步骤 4 中的时钟分割定义的是在定时器时钟频率(CK_INT)与数字滤波器(ETR,TIx)使用的采样频率之间的分频比例。TIM_ClockDivision的参数如下表:
TIM_ClockDivision |
描述 |
二进制值 |
TIM_CKD_DIV1 |
tDTS = Tck_tim |
0x00 |
TIM_CKD_DIV2 |
tDTS = 2 * Tck_tim |
0x01 |
TIM_CKD_DIV4 |
tDTS = 4 * Tck_tim |
0x10 |
数字滤波器(ETR,TIx)是为了将ETR进来的分频后的信号滤波,保证通过信号频率不超过某个限定。
步骤 7 中需要禁止使用预装载缓冲器。当预装载缓冲器被禁止时,写入自动装入的值(TIMx_ARR)的数值会直接传送到对应的影子寄存器;如果使能预加载寄存器,则写入ARR的数值会在更新事件时,才会从预加载寄存器传送到对应的影子寄存器。
ARM中,有的逻辑寄存器在物理上对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存器,称为shadow register(影子寄存器);设计preload register和shadow register的好处是,所有真正需要起作用的寄存器(shadow register)可以在同一个时间(发生更新事件时)被更新为所对应的preload register的内容,这样可以保证多个通道的操作能够准确地同步。如果没有shadow register,或者preload register和shadow register是直通的,即软件更新preload register时,同时更新了shadow register,因为软件不可能在一个相同的时刻同时更新多个寄存器,结果造成多个通道的时序不能同步,如果再加上其它因素(例如中断),多个通道的时序关系有可能是不可预知的。
3、程序源代码
本例实现的是通过TIM2的定时功能,使得LED灯按照1s的时间间隔来闪烁
#include "stm32f10x_lib.h" void RCC_cfg();
void TIMER_cfg();
void NVIC_cfg();
void GPIO_cfg(); int main()
{
RCC_cfg();
NVIC_cfg();
GPIO_cfg();
TIMER_cfg(); //开启定时器2
TIM_Cmd(TIM2,ENABLE); while(1);
} void RCC_cfg()
{
//定义错误状态变量
ErrorStatus HSEStartUpStatus; //将RCC寄存器重新设置为默认值
RCC_DeInit(); //打开外部高速时钟晶振
RCC_HSEConfig(RCC_HSE_ON); //等待外部高速时钟晶振工作
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if(HSEStartUpStatus == SUCCESS)
{ //设置AHB时钟(HCLK)为系统时钟
RCC_HCLKConfig(RCC_SYSCLK_Div1); //设置高速AHB时钟(APB2)为HCLK时钟
RCC_PCLK2Config(RCC_HCLK_Div1); //设置低速AHB时钟(APB1)为HCLK的2分频
RCC_PCLK1Config(RCC_HCLK_Div2); //设置FLASH代码延时
FLASH_SetLatency(FLASH_Latency_2); //使能预取指缓存
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); //使能PLL
RCC_PLLCmd(ENABLE); //等待PLL准备就绪
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //设置PLL为系统时钟源
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //判断PLL是否是系统时钟
while(RCC_GetSYSCLKSource() != 0x08);
} //允许TIM2的时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE); //允许GPIO的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
} void TIMER_cfg()
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; //重新将Timer设置为缺省值
TIM_DeInit(TIM2); //采用内部时钟给TIM2提供时钟源
TIM_InternalClockConfig(TIM2); //预分频系数为36000-1,这样计数器时钟为72MHz/36000 = 2kHz
TIM_TimeBaseStructure.TIM_Prescaler = 36000 - 1; //设置时钟分割
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置计数器模式为向上计数模式
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //设置计数溢出大小,每计2000个数就产生一个更新事件
TIM_TimeBaseStructure.TIM_Period = 2000 - 1; //将配置应用到TIM2中
TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure); //清除溢出中断标志
TIM_ClearFlag(TIM2, TIM_FLAG_Update); //禁止ARR预装载缓冲器
TIM_ARRPreloadConfig(TIM2, DISABLE); //开启TIM2的中断
TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);
} void NVIC_cfg()
{
NVIC_InitTypeDef NVIC_InitStructure; //选择中断分组1
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); //选择TIM2的中断通道
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQChannel; //抢占式中断优先级设置为0
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //响应式中断优先级设置为0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //使能中断
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
} void GPIO_cfg()
{
GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //选择引脚5 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //输出频率最大50MHz GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //带上拉电阻输出 GPIO_Init(GPIOB,&GPIO_InitStructure); } 在stm32f10x_it.c中,我们找到函数TIM2_IRQHandler(),并向其中添加代码 void TIM2_IRQHandler(void) { u8 ReadValue; //检测是否发生溢出更新事件
if(TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { //清除TIM2的中断待处理位
TIM_ClearITPendingBit(TIM2 , TIM_FLAG_Update); //将PB.5管脚输出数值写入ReadValue
ReadValue = GPIO_ReadOutputDataBit(GPIOB,GPIO_Pin_5); if(ReadValue == 0)
{
GPIO_SetBits(GPIOB,GPIO_Pin_5);
}
else
{
GPIO_ResetBits(GPIOB,GPIO_Pin_5);
}
}
}
STM32(5)——通用定时器基本定时器的更多相关文章
- STM32 HAL库学习系列第4篇 定时器TIM----- 开始定时器与PWM输出配置
基本流程: 1.配置定时器 2.开启定时器 3.动态改变pwm输出,改变值 HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1); 函数总结: __HAL_TIM ...
- STM32之通用定时器
广大的互联网的大家早上中午晚上..又好..没错了..我又来了..写博客不是定时的..为什么我要提写博客不是定时的呢??聪明的人又猜到我要说什么了吧.有前途.其实我还是第一次听到定时器有通用和高级之分的 ...
- [stm32] STM32的通用定时器TIMx系统了解
通用定时器(TIMx) 一.TIMx简介 二.TIMx主要功能 三.TIMx功能描述 3.1 时基单元 3.2 计数器模式 3.3 时钟选择 3.4 捕获/比较通道 3.5 输入捕获模式 3.6 PW ...
- stm32之通用定时器TIM
STM32系列的CPU,有多达8个定时器: 1.其中TMI1和TIM8是能够产生三对PWM互补输出的高级定时器,常用于三相电机的驱动:它们的时钟有APB2的输出产生: 2.其它6个为普通定时器,时钟由 ...
- Stm32之通用定时器复习
因为毕业设计要用到PWM调光很久都没用到Stm32的定时器,有些内容已经遗忘,为了回顾复习相关内容今天开下通用定时器这一章节的数据手册. 1.时钟 通用定时器一般是TIM2~TIM5,TIM1.TIM ...
- 一文打尽PWM协议、PPM协议、PCM协议、SBUS协议、XBUS协议、DSM协议 | STM32的通用定时器TIM3实现PPM信号输出
PWM.PPM.PCM.SBUS.XBUS.DSM都是接收机与其他设备通信的协议. 请注意这里不要将遥控器和接收机之间的协议混淆.遥控器和接收机之间会采用某种协议来互相沟通,这些协议往往各个厂牌各自有 ...
- STM32之系统滴答定时器
一.SysTick(系统滴答定时器)概述 操作系统需要一个滴答定时器周期性产生中断,以产生系统运行的节拍.在中断服务程序里,基于优先级调度的操作系统会根据进程优先级切换任务,基于时间片轮转系统会根据时 ...
- STM32定时器配置(TIM1-TIM8)高级定时器+普通定时器,定时计数模式下总结
文章结构: ——> 一.定时器基本介绍 ——> 二.普通定时器详细介绍TIM2-TIM5 ——> 三.定时器代码实例 一.定时器基本介绍 之前有用过野火的学习板上面讲解很详细,所以 ...
- STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时器+普通定时器,定时计数模式下总结
文章结构: ——> 一.定时器基本介绍 ——> 二.普通定时器详细介绍TIM2-TIM5 ——> 三.定时器代码实例 一.定时器基本介绍 之前有用过野火的学习板上面讲解很详细,所以 ...
随机推荐
- Android开发(7)数据库和Content Provider
问题聚焦: 思想:应用程序数据的共享 对数据库的访问仅限于创建它的应用程序,但是事情不是绝对的 Content Provider提供了一个标准的接口,可供其他应用程序访问和使用其他程序的数据 下面我们 ...
- 深入浅出SharePoint2010——请假系统无代码篇之权限设计
首选我们需要区分3个跟权限相关的概念. 权限项目(Permission):最小的权限粒度.比如创建列表项.审批等. 权限级别(Permission Level):权限项目不能直接赋予用户或者用户组,只 ...
- PHP根据图片制作缩略图
php中制作缩略图的方法也很简单,是用imagecopyresampled方法根据源图制作一个小一点的图片,来看代码check_image_addthumbs.php <?php //修改图片效 ...
- [COGS 0407][NOIP 2009] 靶形数独
407. [NOIP2009] 靶形数独 ★★ 输入文件:sudoku.in 输出文件:sudoku.out 简单对比时间限制:5 s 内存限制:128 MB [问题描述] 小城和小华 ...
- 中间人攻击利用框架bettercap测试
0x00前言 上篇提到内网渗透很有趣,这次就从一款新工具说起: bettercap 0x01简介 bettercap可用来实现各种中间人攻击,模块化,便携.易扩展 0x02特点 提到中间人攻击,最知名 ...
- MMM的一个Bug
最近由于 CPAN上 Net::ARP 这个包的稳定版本从 1.0 升级到了 1.0.8, 导致触发了mmm的一个bug. bug的现象: agent没有办法将VIP附着在本机上. agent日志 ...
- 关于C++学习笔记
以清华大学出版社<C++语言程序设计> 第四版,郑莉,董渊,何江舟 三位老师编著为蓝本. 写这学习笔记,是为了自己清晰梳理C++.重粘代码也是为了方便更容易认清结构.
- CADisplayLink分析
1.固定频率定时器: 2.UI帧率性能检测: 3.cpu动画控制器:
- ethereumjs/ethereumjs-blockchain-2-test
https://github.com/ethereumjs/ethereumjs-blockchain/tree/master/test 'use strict' const test = requi ...
- Loadrunner之HTTP脚本编写
Loadrunner之HTTP脚本编写 刚学习性能测试的时候还是建议以录制脚本为好,从录制的脚本中去了解脚本结构,各个函数的用法,慢慢再去尝试自己去编写脚本,如果想往技术方向发展,建议最好学习一门编程 ...