[再寄小读者之数学篇](2014-06-22 不等式 [中国科学技术大学2011年高等数学B考研试题])
证明不等式: $$\bex 1+x\ln\sex{x+\sqrt{1+x^2}}>\sqrt{1+x^2},\quad x>0. \eex$$
证明: 令 $x=\tan t,\ 0<t<\cfrac{\pi}{2}$, 而只要证明 $$\bex 1+\tan t\ln\sex{\sec t+\tan t}>\sec t. \eex$$ 令 $$\bex f(t)=1+\tan t\ln\sex{\sec t+\tan t}-\sec t, \eex$$ 则 $f(0)=0$, $f'(t)=\sec^2t \ln(\sec t+\tan t)>0$. 于是 $f$ 递增, 而 $f(t)>0$, $t>0$.
[再寄小读者之数学篇](2014-06-22 不等式 [中国科学技术大学2011年高等数学B考研试题])的更多相关文章
- [再寄小读者之数学篇](2014-06-22 函数恒为零的一个充分条件 [中国科学技术大学2011年高等数学B考研试题])
设 $f(x)$ 在 $\bbR$ 上连续, 又 $$\bex \phi(x)=f(x)\int_0^x f(t)\rd t \eex$$ 单调递减. 证明: $f\equiv 0$. 证明: 设 $ ...
- [再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])
设数列 $\sed{x_n}$ 满足 $0<x_1<\pi$, $x_{n+1}=\sin x_n\ (n=1,2,\cdots)$. (1) 证明 $\dps{\vlm{n}x_n}$ ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
随机推荐
- 记录Vim常用命令
命令 简单说明 i 进入编辑模式,光标在原位置 I 进入编辑模式,光标在行首位置 o 从光标所在行,下面一行开始编辑 O 从光标所在行,上面一行开始编辑 a 从光标当前字符后编辑 A 从光标所在行的行 ...
- admin组件
Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.你可以在项目的 settings.py 中的 INSTALLED_APPS 看到它 ...
- gpio led学习
2.弄清楚寄存器,gpio等之间的关系,to thi tha 比如: https://www.ggdoc.com/bGludXggZ3Bpb_aTjeS9nA2/NmIzNDIyZGZmMTExZjE ...
- jenkins乱码解决问题
1.jenkins控制台线上乱码解决 系统管理——系统设置,添加编码环境变量 zh.CH.UTF-8 2.java启动后,tomcat日志显示乱码,原因是环境变量没有带过去,因此shell脚本头部需要 ...
- cumprod、prod函数
1.prod函数 prod函数用于求矩阵元素的积,其调用格式如下. (1)B=prod(A):若A为向量,则返回所有元素的积:若A为矩阵,则返回各列所有元素的积. (2)B=prod(A,dim):返 ...
- koa2--delegates模块源码解读
delegates模块是由TJ大神写的,该模块的作用是将内部对象上的变量或函数委托到外部对象上.然后我们就可以使用外部对象就能获取内部对象上的变量或函数.delegates委托方式有如下: gette ...
- tensorboard 可视化网络运行过程
在 tf.summary 里设置好要查看保存的参数后运行会生成 events.out.tfevents.{time}.{machine-name} 的文件,这个就是用 tensorboard 来查看的 ...
- 使用Fabric Node SDK进行Invoke和Query
前面的文章都是在讲解Fabric网络的搭建和ChainCode的开发,那么在ChainCode开发完毕后,我们就需要使用Fabric SDK做应用程序的开发了.官方虽然提供了Node.JS,Java, ...
- Flask —— 信号(5)
Flask框架中的信号基于blinker,其主要就是让开发者可是在flask请求过程中定制一些用户行为. pip3 install blinker 1. 内置信号 request_started = ...
- T66099 小xzy的数对 题解
T66099 小xzy的数对 题目背景 老师带同学参加表演,要求学生两两一组表演,但有些学生一起会发生冲突,现在老师想知道有多少组学生分到一起时不会发生冲突. 题目描述 学生发生冲突当且仅当他们身上的 ...