证明不等式: $$\bex 1+x\ln\sex{x+\sqrt{1+x^2}}>\sqrt{1+x^2},\quad x>0. \eex$$

证明: 令 $x=\tan t,\ 0<t<\cfrac{\pi}{2}$, 而只要证明 $$\bex 1+\tan t\ln\sex{\sec t+\tan t}>\sec t. \eex$$ 令 $$\bex f(t)=1+\tan t\ln\sex{\sec t+\tan t}-\sec t, \eex$$ 则 $f(0)=0$, $f'(t)=\sec^2t \ln(\sec t+\tan t)>0$. 于是 $f$ 递增, 而 $f(t)>0$, $t>0$.

[再寄小读者之数学篇](2014-06-22 不等式 [中国科学技术大学2011年高等数学B考研试题])的更多相关文章

  1. [再寄小读者之数学篇](2014-06-22 函数恒为零的一个充分条件 [中国科学技术大学2011年高等数学B考研试题])

    设 $f(x)$ 在 $\bbR$ 上连续, 又 $$\bex \phi(x)=f(x)\int_0^x f(t)\rd t \eex$$ 单调递减. 证明: $f\equiv 0$. 证明: 设 $ ...

  2. [再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])

    设数列 $\sed{x_n}$ 满足 $0<x_1<\pi$, $x_{n+1}=\sin x_n\ (n=1,2,\cdots)$. (1) 证明 $\dps{\vlm{n}x_n}$ ...

  3. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  4. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  5. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  6. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  7. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  8. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  9. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

随机推荐

  1. SSRS----关于图表参考线(平均线)的添加

    在开发报表的时候,遇到了一个问题,客户需要在气泡图上添加水平和竖直两条平均线(结果参考如下图). 个人知识背景 一般添加参考线本身是有一个相关的设置的,但一般都是相对于Y值,即平行于X轴的.用类似的方 ...

  2. git冲突解决办法合集

    一 换行符CRLF错误解决办法 1 错误产生原因 不同的操作系统使用的换行符是不一样的. unix/linux使用的是LF,max后期也采用了LF,但在windows一直采用的CRLF(回车)换行符. ...

  3. 【English Email】CIP payouts now in Workday

    simplification简化的[ˌsɪmplɪfɪˈkeɪʃn] quota配额[ˈkwoʊtə]  regional区域的[ˈriːdʒənl]  mechanics技工[məˈkænɪks]  ...

  4. jenkins乱码解决问题

    1.jenkins控制台线上乱码解决 系统管理——系统设置,添加编码环境变量 zh.CH.UTF-8 2.java启动后,tomcat日志显示乱码,原因是环境变量没有带过去,因此shell脚本头部需要 ...

  5. 24 python初学(异常)

    try, except, else, finally执行顺序:1. 先执行 try 里面的代码块,如果发生异常就会去捕获. 2. 没有错误就会执行 else 里面的信息. 3. 无论怎样都会执行 fi ...

  6. iOS开发基础-九宫格坐标(4)

    对iOS开发基础-九宫格坐标(3)的代码进行进一步优化. 新建一个 UIView 的子类,并命名为 WJQAppView ,将 appxib.xib 中的 UIView 对象与新建的视图类进行关联. ...

  7. 通过FactoryBean配置Bean

    这是配置Bean的第三种方式,FactoryBean是Spring为我们提供的,我们先来看看源码: 第一个方法:public abstract T getObject() throws Excepti ...

  8. Bean之间的关系

    Bean之间主要有继承和依赖的关系,这里的继承并不是我们面向对象里面所提到的继承. 继承 我们先来创建一个新的配置文件beans-relation.xml <bean id="addr ...

  9. springboot 打war

    pom.xml <packaging>war</packaging> <!-- 打包设置 --> <plugins> <plugin> &l ...

  10. 电脑浅色显示器不显示怎么办,如何用PS去除logo底色

    本人买了新电脑后,虽然电脑显示器颜色也不错,就是刚买回来提示个true color没正确安装,我也没在意,因为感觉电脑显示方面还是不错的,后来定做安装程序用logo图的时候,有个浅色背景色,自己没看出 ...