[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1. 连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0. \eex$$
2. 动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{\bf u}-{\bf P}) -\mu\rot{\bf H}\times{\bf H}=\rho {\bf F}, \eex$$ 或 $$\bex \rho \cfrac{\rd {\bf u}}{\rd t} -\Div{\bf P} -\mu_0\rot{\bf H}\times{\bf H}=\rho {\bf F}. \eex$$
3. 能量守恒方程 $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2+\cfrac{1}{2}\mu_0 H^2} +\Div\sez{\sex{\rho e+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P} {\bf u}}\\ +\Div&\sez{\cfrac{1}{\sigma}\rot{\bf H}\times{\bf H}-\mu_0({\bf u}\times{\bf H})\times{\bf H}} =\Div(\kappa \n T)+\rho {\bf F}\cdot{\bf u}, \eea \eeex$$ 或 $$\bex \rho T\cfrac{\rd S}{\rd t} -\bar \mu \cdot \tr \sex{{\bf S}\cdot\n {\bf u}} -\sex{\bar \mu'-\cfrac{2}{3}\bar \mu}|\Div{\bf u}|^2 -\cfrac{1}{\sigma}|\rot{\bf H}|^2=\Div(\kappa\n T). \eex$$
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正的更多相关文章
- [物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构
1. 在流体存在粘性.热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组. 2. 在流体存在粘性.热传导但 $\sigma=\infty$ ...
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组
不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma ...
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1. 磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma ...
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正
1. Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
随机推荐
- FutureTask并发详解,通俗易懂
最近做项目,使用到了FutureTask和主线程并发,应用到实际中还是挺实用的,特在此总结一下. 有不对之处,忘各位多多指出. package com.demo; import java.util.c ...
- linux上修改mysql登陆密码
1. 修改MySQL的登录设置: # vi /etc/my.cnf 2. 在[mysqld]的段中加上一句:skip-grant-tables 例如: [mysqld] port ...
- vue 用less
https://blog.csdn.net/u013746071/article/details/79655042
- ORACLE跨数据库查询的方法
原文地址:http://blog.csdn.net/huzhenwei/article/details/2533869 本文简述了通过创建database link实现Oracle跨数据库查询的方法 ...
- gulp结合Thinkphp配置
gulpfile.js文件 /*! * gulp * $ npm install gulp gulp-ruby-sass gulp-cached gulp-uglify gulp-rename gul ...
- os模块使用
Python获取当前文件名的两种方法 1,使用python文件默认的‘ file ’属性 2,使用 sys.argv[0] print sys.argv # 输入参数列表print sys.argv[ ...
- loc iloc函数的区别
import pandas as pd data1 = pd.read_excel(r"G:\Python\example1.xlsx") loc 用行列标签,iloc用数字索引. ...
- Autoware(1)——快速开始
该部分可参照github Autoware中的 Demo Quick_Start. 1. 建立目录“.autoware”来保存demo数据 mkdir .autoware 2. 下载Demo数据下载d ...
- Laravel框架下容器Container 的依赖注入和反射应用
依赖注入,简单说是把类里头依赖的对象,置于类外头,即客户端调用处.相当于把类与类解耦. 一个简单的例子: class A { public function __construct() { // 这种 ...
- iOS 封装SDK以及封装时bundle文件的处理
这篇教程的主要目的是解释怎么样在你的iOS工程中创建并使用一个SDK,俗称.a文件. 环境:xcode 9.0 创建一个静态库工程 打开Xcode,点击File\New\Project, 选择iOS\ ...