1016: [JSOI2008]最小生成树计数

题目:传送门

题解:

   神题神题%%%

   据说最小生成树有两个神奇的定理:

   1、权值相等的边在不同方案数中边数相等

      就是说如果一种方案中权值为1的边有n条

      那么在另一种方案中权值为1的边也一定有n条

   2、如果边权为1的边连接的点是x1,x2,x3

      那么另一种方案中边权为1的边连接的也一定是x1,x2,x3

  

   如果知道了这两条定理那就很好做了啊:

   因为等权边的条数一定,那么我们就可以预处理求出不同边权的边的条数

   题目很人道的保证了边权相同的边不会超过10条,那就可以光明正大的递归得出方案数了啊

  

   接下来就要利用定理2了:

   因为连接的点总是不变的,所以每一次选边是没有影响的,那么递归求出每一种权值边的方案数之后用乘法原理乘起来就ok

代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define mod 31011
#define qread(x) x=read()
using namespace std;
inline int read()
{
int f=,x=;char ch;
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
struct node
{
int x,y,c,next;
}a[];int n,m,sum;
int fa[];
int findfa(int x)
{
if(x==fa[x])return x;
return findfa(fa[x]);
}
bool cmp(node n1,node n2)
{
return n1.c<n2.c;
}
int d[],s[];
void dfs(int k,int t,int i)//当前选的是第k种边,已经选了t条,当前位置为第i条边
{
if(i==s[k]+)
{
if(t==d[k])
sum++,sum%=mod;
return ;
}
int fx=findfa(a[i].x),fy=findfa(a[i].y);
if(fx!=fy)
{
fa[fx]=fy;
dfs(k,t+,i+);
fa[fx]=fx;
}
dfs(k,t,i+);
}
int main()
{
qread(n);qread(m);
for(int i=;i<=m;i++){qread(a[i].x);qread(a[i].y);qread(a[i].c);}
sort(a+,a+m+,cmp);
for(int i=;i<=n;i++)fa[i]=i;
int k=,t=;memset(d,,sizeof(d));memset(s,,sizeof(s));
for(int i=;i<=m;i++)
{
int fx=findfa(a[i].x),fy=findfa(a[i].y);
if(a[i].c!=a[i-].c)s[k]=i-,k++;//记录第k种边的最后一个位置
if(fx!=fy)
{
fa[fx]=fy;
t++;d[k]++;
}
}
s[k]=m;
if(t!=n-){printf("0\n");return ;}
for(int i=;i<=n;i++)fa[i]=i;
int ans=;
for(int i=;i<=k;i++)
{
sum=;
dfs(i,,s[i-]+);
ans=(ans*sum)%mod;
for(int j=s[i-]+;j<=s[i];j++)
{
int fx=findfa(a[j].x),fy=findfa(a[j].y);
if(fx!=fy)fa[fx]=fy;
}
}
printf("%d\n",ans);
return ;
}

bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)的更多相关文章

  1. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  2. [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  3. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  4. bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...

  5. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  6. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  7. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    一直以为这题要martix-tree,实际上因为有相同权值的边不大于10条于是dfs就好了... 先用kruskal求出每种权值的边要选的次数num,然后对于每种权值的边2^num暴搜一下选择的情况算 ...

  8. BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  9. bzoj1016/luogu4208 最小生成树计数 (kruskal+暴搜)

    由于有相同权值的边不超过10条的限制,所以可以暴搜 先做一遍kruskal,记录下来每个权值的边使用的数量(可以离散化一下) 可以证明,对于每个权值,所有的最小生成树中选择的数量是一样的.而且它们连成 ...

随机推荐

  1. POJ 3744

    矩阵快速乘求概率,不难.但有注意的一点是,一定要注意地雷连着的情况,一旦出现两个雷相邻,就必定为0了. #include <iostream> #include <algorithm ...

  2. java去除反复的字符串和移除不想要的字符串

    在java开发中碰到了有些字符串是反复的,假设在进行业务处理要所有遍历太对的数据就会反复,所以在进行业务处理前进行一个去重操作. watermark/2/text/aHR0cDovL2Jsb2cuY3 ...

  3. Webstorm快捷键整理

    Webstorm快捷键整理 F2/Shift F2  下一个/上一个高亮错误 Ctrl+Shift+BackSpace 回到刚刚编辑的地方 Alt+Insert 新建文件,还有其他功能 Ctrl+D ...

  4. php给图片加入文字水印

    PHP对图片的操作用到GD库.这里我们介绍怎样给图片加入文字水印. 大致分为四步: 1.打开图片 2.操作图片 3.输出图片 4.销毁图片 以下我们上代码来详细解说每步的实现过程: <? php ...

  5. 使用docker搭建hadoop分布式集群

    使用docker搭建部署hadoop分布式集群 在网上找了非常长时间都没有找到使用docker搭建hadoop分布式集群的文档,没办法,仅仅能自己写一个了. 一:环境准备: 1:首先要有一个Cento ...

  6. CxImage的使用及基本用法

    基本定义:CxImage类库是一个优秀的图像操作类库.它可以快捷地存取.显示.转换各种图像. 下载地址:http://www.codeproject.com/KB/graphics/cximage.a ...

  7. Binary Indexed Tree

    我借鉴了这个视频中的讲解的填坑法,我认为非常易于理解.有FQ能力和基本英语听力能力请直接去看视频,并不需要继续阅读. naive 算法 考虑一个这样的场景: 给定一个int数组, 我们想知道它的连续子 ...

  8. mysql导入数据,涉及到时间转换,乱码问题解决

    表结构: drop table if exists `qi_an_log`;CREATE TABLE `qian_log` (`dt` LONG NOT NULL COMMENT '产生日期,格式yy ...

  9. javax.validation参数校验

    在实体字段加注解: /** * 机构名称 */ @ApiParam(name = "orgName", value = "机构名称") @Size(max = ...

  10. Android 设置AlertDialog的大小 .

    AlertDialog dialog = builder.setTitle("消息列表") .setView(layout) .create(); dialog.show(); / ...