Background reading: Forsyth and Ponce, Computer Vision Chapter 7

Image sampling and quantization

Types of images: binary, gray scale, color

Resolution: DPI: dots per inch, spatial pixel density

Image histograms: histogram of an image provides the frequency of the brightness(intensity) value in the image

Image as functions: an image is a funciton  $f$ from $R^2$ to $R^M$

Linear systems: Forming a new image whose pixel values are transformed from original pixel values

Goal: extract useful information from images, or transform  images into another domain where we can modify/enhance image properties.

  • Features(edges, corners, blobs)
  • super-resolution, in-painting, de-nosing

Moving Average, image segmentation,

Convolution and correlation:

Edge effect: A computer will only convolve finite support signal,at the edge:

  • zero padding
  • edge value replication
  • mirror extension

[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 4 像素和滤波器的更多相关文章

  1. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 1 课程介绍

    课程大纲:http://vision.stanford.edu/teaching/cs131_fall1718/syllabus.html 课程定位: 课程交叉: what is (computer) ...

  2. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 2 颜色和数学基础

    大纲 what is color? The result of interaction between physical light in the environment and our visual ...

  3. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 9 深度学习

    深度学习 So far this week Edge detection RANSAC SIFT K-Means Linear classifier Mean-shift PCA/Eigenfaces ...

  4. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 3 线性代数初步

    向量和矩阵 什么是矩阵/向量? Vectors and matrix are just collections of ordered numbers that represent something: ...

  5. Computer Vision: Algorithms and ApplicationsのImage processing

    实在是太喜欢Richard Szeliski的这本书了.每一章节(after chapter3)都详述了该研究方向比較新的成果.还有很多很多的reference,假设你感兴趣.全然能够看那些參考论文 ...

  6. Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg

    In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a ...

  7. Computer Vision Algorithm Implementations

    Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...

  8. Learning ROS for Robotics Programming Second Edition学习笔记(五) indigo computer vision

    中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...

  9. Computer Vision 学习 -- 图像存储格式

    本文把自己理解的图像存储格式总结一下. 计算机中的数据,都是二进制的,所以图片也不例外. 这是opencv文档的描述,具体在代码里面,使用矩阵来进行存储. 类似下图是(BGR格式): 图片的最小单位是 ...

随机推荐

  1. Top English interview Q&A

    http://www.hjenglish.com/new/p581292/ vocabulary endeavour [ɪn'devər] relevant ['reləvənt] , efficie ...

  2. xml01 验证

    xml 验证 拥有正确的格式的xml是"形势良好"的xml 通过DTD验证的xml是"合法的"xml

  3. Struts2校验

    struts2校验有两种实现方法: 手工编写代码实现(基本验证) //login.jsp <font color="red"><s:fielderror/> ...

  4. pythonWeb -- Django开发- Admin

    [第一次使用Admin 要创建超级用户账号] 1.\ python manage.py createsuperuser You have 1 unapplied migration(s). Your ...

  5. C++表达式求值(利用数据结构栈)

    唉,刚刚用C++又又一次写了一个较完好的表达式求值程序,最后精简后程序还不到100行.这不经让我 想到了大一上学期刚学c语言时自己费了好大的劲,写了几百行并且功能还不是非常齐全(当时还不能计算有括号的 ...

  6. Microsoft Dynamics CRM 2013 for Outlook 的硬件要求

    当仅联机或脱机模式下执行 Microsoft Dynamics CRM 2013 for Microsoft Office Outlook 时,下表列出了建议的最低硬件要求 watermark/2/t ...

  7. UNIX环境高级编程(5):文件I/O(1)

    UNIX系统中的大多数文件I/O仅仅须要用到5个函数:open.read.write.lseek以及close.本章说明的函数常常称为"不带缓冲的I/0",术语不带缓冲指的是每一个 ...

  8. 51nod-1363: 最小公倍数之和

    [传送门:51nod-1363] 简要题意: 给出一个数n,求出1到n的数与n的最小公倍数的和 多组数据 题解: 理所当然推柿子 原题相当于求$\sum_{i=1}^{n}\frac{i*n}{gcd ...

  9. 树状数组(Binary Indexed Tree(BIT))

    先不说别的,这个博客为我学习树状数组提供了很大帮助,奉上传送门 http://blog.csdn.net/int64ago/article/details/7429868 然后就说几个常用的操作 in ...

  10. Memcache相关面试题

    1)memcached的cache机制是怎样的? 懒惰算法 +最近最少使用原则 2)memcached如何实现冗余机制? 冗余:就是有好多好多不经常使用的. 可以不用实现冗余机制,如果非要实现.那就搞 ...