BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd
Time Limit: 10 Sec Memory Limit:
256 MB
Submit: 2534 Solved: 1129
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
hint
对于例子(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
Source
题目链接: id=2818">http://www.lydsy.com/JudgeOnline/problem.php? id=2818
题目分析:两种姿势,莫比乌斯反演或者欧拉函数,先说简单的方法。欧拉函数,由于仅仅有一个上界n,所以变换一下1 <= x / p, y / p <= n / p,GCD(x / p, y / p) == 1,
直接求欧拉函数,令num[i]表示1到i中 1<=x,y<=i 且gcd(x,y) == 1个对数,显然有num[i] = 1 + phi[j] * 2,(1 < j <= i),这个1指的是(1, 1)。乘2是由于(1, 2) (2, 1)算两个不同的,那么最后依据我们先前变换的公式。累加num[n / p]的值就可以
#include <cstdio>
#include <cstring>
#define ll long long
int const MAX = 1e7 + 5;
int p[MAX], phi[MAX];
bool prime[MAX];
ll num[MAX];
int pnum; void get_eular(int n)
{
pnum = 0;
memset(prime, true, sizeof(prime));
for(int i = 2; i <= n; i++)
{
if(prime[i])
{
p[pnum ++] = i;
phi[i] = i - 1;
}
for(int j = 0; j < pnum && i * p[j] <= n; j++)
{
prime[i * p[j]] = false;
if(i % p[j] == 0)
{
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
} int main()
{
int n;
ll ans = 0;
scanf("%d", &n);
get_eular(n);
num[1] = 1;
for(int i = 2; i <= n; i++)
num[i] = num[i - 1] + 2 * phi[i];
for(int i = 0; i < pnum; i++)
if(n / p[i] > 0)
ans += num[n / p[i]];
printf("%lld\n", ans);
}
这题也能够用莫比乌斯反演做。还是做上述变换。1 <= x / p, y / p <= n / p,GCD(x / p, y / p) == 1,这样的题真的做烂了,懒得说了直接贴
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const MAX = 1e7 + 5;
int mob[MAX], p[MAX], sum[MAX];
bool prime[MAX];
int pnum; void Mobius(int n)
{
pnum = 0;
memset(prime, true, sizeof(prime));
memset(sum, 0, sizeof(sum));
mob[1] = 1;
sum[1] = 1;
for(int i = 2; i <= n; i++)
{
if(prime[i])
{
p[pnum ++] = i;
mob[i] = -1;
}
for(int j = 0; j < pnum && i * p[j] <= n; j++)
{
prime[i * p[j]] = false;
if(i % p[j] == 0)
{
mob[i * p[j]] = 0;
break;
}
mob[i * p[j]] = -mob[i];
}
sum[i] = sum[i - 1] + mob[i];
}
} ll cal(int n)
{
ll res = 0;
for(int i = 1, last = 0; i <= n; i = last + 1)
{
last = n / (n / i);
res += (ll) (n / i) * (n / i) * (sum[last] - sum[i - 1]);
}
return res;
} int main()
{
int n;
ll ans = 0;
scanf("%d", &n);
Mobius(n);
for(int i = 0; i < pnum; i++)
if(n / p[i] > 0)
ans += cal(n / p[i]);
printf("%lld\n", ans);
}
BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)的更多相关文章
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)
题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...
- UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...
- 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)
[BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...
- Bzoj 2818: Gcd(莫比乌斯反演)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对 ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- LightOJ 1375 - LCM Extreme 莫比乌斯反演或欧拉扩展
题意:给出n [1,3*1e6] 求 并模2^64. 思路:先手写出算式 观察发现可以化成 那么关键在于如何求得i为1~n的lcm(i,n)之和.可以知道lcm(a,b)为ab/gcd(a,b) 变换 ...
- BZOJ 最大公约数 (通俗易懂&效率高&欧拉函数)
题目 题目描述 给定整数\(N\),求\(1 \le x,y \le N\)且\(gcd(x,y)\)为素数的数对\((x,y)\)有多少对. \(gcd(x,y)\)即求\(x,y\)的最大公约数. ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- Windows下Vim主题变更
默认的好丑! 主题位置. 修改配置文件. 添加主题设置. 新的主题,很高端大气. set fileencodings=utf8,ucs-bom,cp936,big set fileencoding=u ...
- php建立简单的用户留言系统
php建立简单的用户留言系统 样例 addMsg.php--添加留言页面 doAction.php--响应添加留言页面 . viewMsg.php--显示留言页面 目录结构 addMsg.php--添 ...
- WPF中StringToImage和BoolToImage简单用法
在WPF的绑定控件操作中,经常会通过bool值或者某些特定的string值做出相应动作.但UI层控件的很多属性对应的都不是Bool值或者对应的只是固定的String值. 这个时候有两方法解决该问题. ...
- 利用ajax,canvas实现的测试php程序占用内存的代码
receive.php <?php $array["time"]=time();$array["memory"]=memory_get_usage();e ...
- HDU1412 {A} + {B}
2019-05-17 10:15:01 每个元素之间有一个空格隔开. 每行最后一的元素后面没有空格,区别于HDU人见人爱A - B 注意使用STL的时候要清空 . a.clear(); #inclu ...
- javascript中对象两种创建方式
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 数据结构——栈的实现(数组、Java)
巩固数据结构 栈是一种有限制的线性表 只能对表尾进行操作 package com.shine.test.datastruct; import java.util.Arrays; public clas ...
- Python 实现简单图片验证码登录
朋友说公司要在测试环境做接口测试,登录时需要传入正确的图片的验证码,本着懒省事的原则,推荐他把测试环境的图片验证码写死,我们公司也是这么做的^_^.劝说无果/(ㄒoㄒ)/~~,只能通过 OCR 技术来 ...
- jq+mui 阻止事件冒泡
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...
- CorelDRAW最高立返500元!还剩30个名额!速抢!
由于上月CDR X7返利活动收获众多好评 本月官方继续将活动进行到底! 而此次活动不但有上月意犹未尽的CDR X7版,更增加了CDR X6.CDR 2017以及可望不可即的CDR 2018版,可谓是优 ...