BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd
Time Limit: 10 Sec Memory Limit:
256 MB
Submit: 2534 Solved: 1129
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
hint
对于例子(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
Source
题目链接: id=2818">http://www.lydsy.com/JudgeOnline/problem.php? id=2818
题目分析:两种姿势,莫比乌斯反演或者欧拉函数,先说简单的方法。欧拉函数,由于仅仅有一个上界n,所以变换一下1 <= x / p, y / p <= n / p,GCD(x / p, y / p) == 1,
直接求欧拉函数,令num[i]表示1到i中 1<=x,y<=i 且gcd(x,y) == 1个对数,显然有num[i] = 1 + phi[j] * 2,(1 < j <= i),这个1指的是(1, 1)。乘2是由于(1, 2) (2, 1)算两个不同的,那么最后依据我们先前变换的公式。累加num[n / p]的值就可以
#include <cstdio>
#include <cstring>
#define ll long long
int const MAX = 1e7 + 5;
int p[MAX], phi[MAX];
bool prime[MAX];
ll num[MAX];
int pnum; void get_eular(int n)
{
pnum = 0;
memset(prime, true, sizeof(prime));
for(int i = 2; i <= n; i++)
{
if(prime[i])
{
p[pnum ++] = i;
phi[i] = i - 1;
}
for(int j = 0; j < pnum && i * p[j] <= n; j++)
{
prime[i * p[j]] = false;
if(i % p[j] == 0)
{
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
} int main()
{
int n;
ll ans = 0;
scanf("%d", &n);
get_eular(n);
num[1] = 1;
for(int i = 2; i <= n; i++)
num[i] = num[i - 1] + 2 * phi[i];
for(int i = 0; i < pnum; i++)
if(n / p[i] > 0)
ans += num[n / p[i]];
printf("%lld\n", ans);
}
这题也能够用莫比乌斯反演做。还是做上述变换。1 <= x / p, y / p <= n / p,GCD(x / p, y / p) == 1,这样的题真的做烂了,懒得说了直接贴
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const MAX = 1e7 + 5;
int mob[MAX], p[MAX], sum[MAX];
bool prime[MAX];
int pnum; void Mobius(int n)
{
pnum = 0;
memset(prime, true, sizeof(prime));
memset(sum, 0, sizeof(sum));
mob[1] = 1;
sum[1] = 1;
for(int i = 2; i <= n; i++)
{
if(prime[i])
{
p[pnum ++] = i;
mob[i] = -1;
}
for(int j = 0; j < pnum && i * p[j] <= n; j++)
{
prime[i * p[j]] = false;
if(i % p[j] == 0)
{
mob[i * p[j]] = 0;
break;
}
mob[i * p[j]] = -mob[i];
}
sum[i] = sum[i - 1] + mob[i];
}
} ll cal(int n)
{
ll res = 0;
for(int i = 1, last = 0; i <= n; i = last + 1)
{
last = n / (n / i);
res += (ll) (n / i) * (n / i) * (sum[last] - sum[i - 1]);
}
return res;
} int main()
{
int n;
ll ans = 0;
scanf("%d", &n);
Mobius(n);
for(int i = 0; i < pnum; i++)
if(n / p[i] > 0)
ans += cal(n / p[i]);
printf("%lld\n", ans);
}
BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)的更多相关文章
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)
题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...
- UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...
- 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)
[BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...
- Bzoj 2818: Gcd(莫比乌斯反演)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对 ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- LightOJ 1375 - LCM Extreme 莫比乌斯反演或欧拉扩展
题意:给出n [1,3*1e6] 求 并模2^64. 思路:先手写出算式 观察发现可以化成 那么关键在于如何求得i为1~n的lcm(i,n)之和.可以知道lcm(a,b)为ab/gcd(a,b) 变换 ...
- BZOJ 最大公约数 (通俗易懂&效率高&欧拉函数)
题目 题目描述 给定整数\(N\),求\(1 \le x,y \le N\)且\(gcd(x,y)\)为素数的数对\((x,y)\)有多少对. \(gcd(x,y)\)即求\(x,y\)的最大公约数. ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- 略过天涯 深入浅出VGA和DVI接口【转】
本文转载自:http://www.cnblogs.com/lueguo/p/3373649.html 由CrazyBingo修改…… 前言:目前显示器的主流接口是VGA.DVI以及HDMI,再加上一个 ...
- nyoj--79--导弹拦截(动态规划)
拦截导弹 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 某国为了防御敌国的导弹袭击,发展中一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任 ...
- UVA-1335(UVALive-3177) Beijing Guards 贪心 二分
题面 题意:有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个相邻的人拥有同一种礼物,则双方都会很不高兴,问最少需要多少种不同的礼物才能满足所有人 ...
- BZOJ 2729 高精度+组合数学
思路: 考虑 把男生排成一排 女生和老师往里插 分成两种情况. 1. 女生中间夹着老师 2. 女生中间没有夹着老师 求一下组合* 阶乘就好了 先放Python代码 简洁易懂 def fact(n): ...
- MVC HtmlHelper扩展——实现分页功能
MVC HtmlHelper扩展类(PagingHelper) using System; using System.Collections.Generic; using System.Collect ...
- resgen.exe 已退出 代码为 1073741701的错误的解决办法
以管理员的身份打开命令提示窗口:(开始-运行-cmd),更改目录至"CD C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\”下 ...
- 单元测试之Mock
为什么需要Mock. 真实对象具有不确定的行为.所以会产生不可预测的结果. 真实对象很难被创建. 真实对象的某些行为很难被触发(如网络错误). 真实对象令程序的运行速度很慢. 真实对象有(或者是)用户 ...
- 织梦dedecms红黑配图片模板源码v2.0
dedecms红黑配风格美女图片站是采用dedecms程序搭建的图片网站源码,网站感觉很大气,简约但是不简单,适合做图片网站.网站模板是收集其他网站的模板,感谢原网站提供者.在安装过程中出现问题,现已 ...
- java 简单工厂模式实现
简单工厂模式:也可以叫做静态工厂方法,属于类创建型模式,根据不同的参数,返回不同的类实现. 主要包含了三个角色: A.抽象产品角色 一般用接口 或是 抽象类实现 B.具体的产品角色,具体的类的实现 C ...
- (转)基于MVC4+EasyUI的Web开发框架形成之旅--总体介绍
http://www.cnblogs.com/wuhuacong/p/3281103.html 最近花了很多时间在重构和进一步提炼Winform开发框架的工作上,加上时不时有一些项目的开发工作,我博客 ...