[ZJOI2010]Perm

题目

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

INPUT

输入文件的第一行包含两个整数 n和p,含义如上所述。

OUTPUT

输出文件中仅包含一个整数,表示计算1,2,?, ???的排列中, Magic排列的个数模 p的值。

SAMPLE

INPUT

20 23

OUTPUT

16

解题报告

这竟然是一道树规= =

其实想明白之后挺简单的

我们考虑一颗满二叉树,一个节点$i$如果有左儿子,那么它的左儿子编号一定为$i\times 2$,如果它有右儿子,那么它的右儿子编号一定为$i\times 2+1$

再回来看这道题,假如我们建一颗满二叉树,那么问题不就转化成所有儿子的权值都比父亲的权值大的方案数么?

设$f[size[i]]$代表编号为$i$的节点的方案数

我们要取出$i-1$个(把自己去掉)比它大的数,一部分放在左子树,一部分放在右子树,且当左子树确定了取出哪些数时,右子树所取出的数也是一定的

故我们可以推出状态转移方程:

$$f[size[i]]=C_{size[i]-1}^{size[i<<1]}\times f[size[i<<1]]\times f[size[i<<1|1]]$$

然后实现即可

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long L;
L n,p;
L fac[];
inline L po(L x,L hm){
L ret();
while(hm){
if(hm&)
ret=ret*x%p;
x=x*x%p;
hm>>=;
}
return ret;
}
inline L C(int n,int m){
return fac[n]*po(fac[m],p-)%p*po(fac[n-m],p-)%p;
}
struct edge{
int e;
edge *n;
}a[],*pre[];
int tot;
inline void insert(int s,int e){
a[++tot].e=e;
a[tot].n=pre[s];
pre[s]=&a[tot];
}
int size[];
inline void get_size(int u){
size[u]=;
for(edge *i=pre[u];i;i=i->n){
int e(i->e);
if(!size[e]){
get_size(e);
size[u]+=size[e];
}
}
}
L f[];
inline void dfs(int u){
if(u>n){
// size[u]=0;
// f[0]=1;
return;
}
// cout<<u<<endl;
// size[u]=1;
dfs(u<<);
// size[u]+=size[u<<1];
dfs(u<<|);
// size[u]+=size[u<<1|1];
f[size[u]]=C(size[u]-,size[u<<])*f[size[u<<]]%p*f[size[u<<|]]%p;
}
inline int gg(){
// freopen("permzj.in","r",stdin);
// freopen("permzj.out","w",stdout);
scanf("%lld%lld",&n,&p);
fac[]=fac[]=;
for(int i=;i<=n;++i){
L tmp(i);
while(tmp%p==)
tmp/=p;
fac[i]=fac[i-]*tmp%p;
}
for(int i=;i<=n;++i){
if((i<<)>n)
break;
insert(i,i<<);
if((i<<|)>n)
break;
insert(i,i<<|);
}
get_size();
f[]=f[]=;
dfs();
printf("%lld",f[n]%p);
// for(int i=1;i<=n;++i)
// cout<<"i="<<i<<" size[i]="<<size[i]<<endl;
return ;
}
int K(gg());
int main(){;}

[ZJOI2010]Perm的更多相关文章

  1. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  2. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  3. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  4. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

  5. BZOJ2111: [ZJOI2010]Perm 排列计数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...

  6. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  7. bzoj 2111 [ZJOI2010]Perm 排列计数(DP+lucas定理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i ...

  8. [BZOJ2111][ZJOI2010]Perm排列计数(组合数学)

    题意就是求一个n个点的堆的合法形态数. 显然,给定堆中所有数的集合,则这个堆的根是确定的,而由于堆是完全二叉树,所以每个点左右子树的大小也是确定的. 设以i为根的堆的形态数为F(i),所以F(i)+= ...

  9. BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...

随机推荐

  1. bzoj 2217 Lollipop

    题目大意: 有一个长度为n的序列a1,a2,...,an.其中ai要么是1("W"),要么是2("T") 现在有m个询问,每个询问是询问有没有一个连续的子序列, ...

  2. luoguP2939 [USACO09FEB]改造路Revamping Trails

    约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 速公路. ...

  3. bzoj2780

    AC自动机+树链剖分+线段树/树状数组+dfs序+树链的并 题意:给出n个母串和q个询问串,对于每个询问串输出有多少个母串包含这个询问串 N=∑|母串|<=10^5 Q=∑|询问串|<=3 ...

  4. handbook/CentOS/使用免费SSL证书让网站支持HTTPS访问.md

  5. struts2标签---备忘录

    <s:form action="sloginAction" method="post"> <s:textfield label="用 ...

  6. bzoj1088扫雷(搜索)

    1088: [SCOI2005]扫雷Mine Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3669  Solved: 2153[Submit][St ...

  7. [App Store Connect帮助]一、 App Store Connect 使用入门(4)iOS 版 App Store Connect

    通过 iOS 版 App Store Connect,您可以在移动设备上查看销售数据.App 元数据和顾客评论.您还可以检查 App 状态.发布您 App 的新版本并回应“Resolution Cen ...

  8. [Swift通天遁地]九、拔剑吧-(2)在项目中使用大量美观的图标

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  9. $luogu2375[NOI2014]$

    \(problem\) 其中,\(next[i],next[next[i]],next[next[next[i]]]......\)都是这个前缀串i的公共前后缀,而且只有它们是公共前后缀 那么,我们其 ...

  10. ZOJ3714JavaBeans

    #!/usr/bin/env python # encoding: utf-8 t = int(raw_input()) for i in range(t): n,k = [int(x) for x ...