几大最短路径算法比较

转自:http://blog.csdn.net/v_july_v/article/details/6181485

几个最短路径算法的比较:

Floyd

       求多源、无负权边的最短路。用矩阵记录图。时效性较差,时间复杂度O(V^3)。

       Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题。

Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2)。

Floyd-Warshall的原理是动态规划:

设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度。

若最短路径经过点k,则Di,j,k = Di,k,k-1 + Dk,j,k-1;

若最短路径不经过点k,则Di,j,k = Di,j,k-1。

因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。

在实际算法中,为了节约空间,可以直接在原来空间上进行迭代,这样空间可降至二维。

Floyd-Warshall算法的描述如下:

for k ← 1 to n do

  for i ← 1 to n do

    for j ← 1 to n do

      if (Di,k + Dk,j < Di,j) then

        Di,j ← Di,k + Dk,j;

其中Di,j表示由点i到点j的代价,当Di,j为 ∞ 表示两点之间没有任何连接。

Dijkstra

求单源、无负权的最短路。时效性较好,时间复杂度为O(V*V+E)。

源点可达的话,O(V*lgV+E*lgV)=>O(E*lgV)。

      当是稀疏图的情况时,此时E=V*V/lgV,所以算法的时间复杂度可为O(V^2) 。若是斐波那契堆作优先队列的话,算法时间复杂度,则为O(V*lgV + E)。

更多,请参考:二(续)、彻底理解Dijkstra算法,及二(再续)、Dijkstra
算法+fibonacci堆的逐步c实现

Bellman-Ford

求单源最短路,可以判断有无负权回路(若有,则不存在最短路),

时效性较好,时间复杂度O(VE)。此算法日后还会在本BLOG内具体阐述。

Bellman-Ford算法是求解单源最短路径问题的一种算法。

单源点的最短路径问题是指:

给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。

与Dijkstra算法不同的是,在Bellman-Ford算法中,边的权值可以为负数。

      设想从我们可以从图中找到一个环路(即从v出发,经过若干个点之后又回到v)且这个环路中所有边的权值之和为负。那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去。如果不处理这个负环路,程序就会永远运行下去。 而Bellman-Ford算法具有分辨这种负环路的能力。

SPFA

是Bellman-Ford的队列优化,时效性相对好,时间复杂度O(kE)。(k<<V)。

与Bellman-ford算法类似,SPFA算法采用一系列的松弛操作以得到从某一个节点出发到达图中其它所有节点的最短路径。所不同的是,SPFA算法通过维护一个队列,使得一个节点的当前最短路径被更新之后没有必要立刻去更新其他的节点,从而大大减少了重复的操作次数。

SPFA算法可以用于存在负数边权的图,这与dijkstra算法是不同的。

与Dijkstra算法与Bellman-ford算法不同,SPFA的算法时间效率是不稳定的,即它对于不同的图所需要的时间有很大的差别。

在最好情形下,每一个节点都只入队一次,则算法实际上变为广度优先遍历,其时间复杂度仅为O(E)。另一方面,存在这样的例子,使得每一个节点都被入队(V-1)次,此时算法退化为Bellman-ford算法,其时间复杂度为O(VE)。

SPFA算法在负边权图上可以完全取代Bellman-ford算法,另外在稀疏图中也表现良好。但是在非负边权图中,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法,以及它的使用堆优化的版本。通常的SPFA算法在一类网格图中的表现不尽如人意。

完。

几个最短路径算法Floyd、Dijkstra、Bellman-Ford、SPFA的比较的更多相关文章

  1. (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍

    这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: / ...

  2. 几个最短路径算法Floyd、Dijkstra、Bellman-Ford、SPFA的比较(转)

    几大最短路径算法比较 几个最短路径算法的比较:Floyd        求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floy ...

  3. 多源最短路径算法—Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  4. 最短路径算法之Dijkstra算法(java实现)

    前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...

  5. 图中最短路径算法(Dijkstra算法)(转)

    1.Dijkstra 1)      适用条件&范围: a)   单源最短路径(从源点s到其它所有顶点v); b)   有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E ...

  6. 最短路径算法(Dijkstra算法、Floyd-Warshall算法)

    最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题.适合使用Dijkstra算法. 确定终点的最短路径问题:即已知终结结点,求最短路径的问题.在无向图中,该问题与确 ...

  7. 非负权值有向图上的单源最短路径算法之Dijkstra算法

    问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对 ...

  8. 【最短路算法】Dijkstra+heap和SPFA的区别

    单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...

  9. 网格最短路径算法(Dijkstra & Fast Marching)

    Dijkstra算法是计算图中节点之间最短路径的经典算法,网上关于Dijkstra算法原理介绍比较多,这里不再多讲.值得一提的是,当图中节点之间的权重都为1时,Dijkstra算法就变化为一般意义上的 ...

随机推荐

  1. elasticsearch从入门到出门-03-多种搜索

    1.query string search 2.query DSL 3.query filter 4.full-text search 5.phrase search 6.highlight sear ...

  2. Struts中类型转换踩的坑

    出现的异常: 当我输入的数据很大时候,转换后如上,这并不是我想要的, 出现问题的原因: Struts2对常用的数据类型如String.Integer.Double等都添加了转换器进行对应的转换操作. ...

  3. Java基础 - 变量的定义和使用

    变量定义 public class Main { public static void main(String[] args) { // 定义byte类型的变量 byte b = 10; System ...

  4. Js中的apply和call

    1.call和apply都是为了改变某个函数运行时的上下文而存在的 2.也就是改变函数体内this的指向. 3.二者的作用完全一样,只是接受参数的方式不太一样. 4.call 需要把参数按顺序传递进去 ...

  5. R语言数据管理(二):模式与类

      最常用的4种数据类型是数值型(numeric).字符型(character)(字符串).日期型(Date)或POSIXct(基于日期的).逻辑型(logical)(TRUE或FALSE). 变量中 ...

  6. STM32L0 复位和时钟控制 Reset and clock control (RCC)

    时钟源: HSE:外部时钟 HSI16:可以直接用于系统时钟或者作为PLL输入.一般是1%精度 HSI48:The HSI48 clock signal is generated from an in ...

  7. sql语句 字段的赋值

    将同一个表中的一个字段2的所有值赋值给另一个字段1 UPDATE 表名 SET 字段1 = 字段2 也可以把字段所有的值赋为null UPDATE 表名 SET 字段1 = null

  8. flex 动画笔记

    1.不涉及到组件宽度和高度变化的 如果类似showEffect等属性不好使的,直接使用hideEffect.end(); showEffect.play();等这样的用法. 2.涉及到组件宽度和高度变 ...

  9. python开发环境必备之vim配置

    俗话说:工欲善其事,必先利其器.最近使用python,习惯了liunx和vim,打算将vim作为python开发工具,下面就配置vim,以让它成为python开发的利器,增强我们的开发体验!废话少说, ...

  10. Android系统Recovery工作原理之使用update.zip升级过程分析(三)【转】

    本文转载自:http://blog.csdn.net/mu0206mu/article/details/7464699 以下的篇幅开始分析我们在上两个篇幅中生成的update.zip包在具体更新中所经 ...