Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 6539  Solved: 2558
[Submit][Status][Discuss]

Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

首先要知道 Prufer数列 和 节点度数 这种东西,自行Google。

Plufer数列有一下性质:

1、可以表示为任意一个长度为n-2的数列

2、任意一点的度数为d[i],则该节点在数列中出现d[i]-1次

3、因此数列的总长度为:

\[sum=\sum _{i=1}^{n} (d[i]-1)\]

得出这个总长度的前提是,所有度数已知,但题目并没有给出所有的度数。但是我们可以计算出已知n个点的度数,可以构造出多少种Prufer数列:

\[\frac{(n-2)!}{\prod _{i-1}^{n}(d[i]-1)!}\]

那么已知cnt个点的度数,可以构造出多少种Prufer数列呢?

\[C_{n-2}^{sum}\times \frac{sum!}{\prod _{i-1}^{n}(d[i]-1)!}\]

那么已知cnt个点的度数,n-cnt个点的度数未知,可以构造出多少种Prufer数列呢?

\[ans=C_{n-2}^{sum}\times\frac{sum!}{\prod _{i-1}^{n}(d[i]-1)!}\times(n-cnt)^{n-2-sum}\]

最终可以化简得:

\[ans=\frac{(n-2)!}{(n-2-sum)!\prod _{i-1}^{n}(d[i]-1)!}\times(n-cnt)^{n-2-sum}\]

沿用了之前高精度乘除单精度的模板,减少代码量(明明是增加了)

虽说质因数分解更能显示bigger。。。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iomanip>
using namespace std; const int MAXN=;
const int DLEN=;
const int WIDE=;
class BigNum
{
public:
int NUM[MAXN];
int L;
bool flag;
BigNum(){memset(NUM,,sizeof(NUM));L=;flag=;}
BigNum(const BigNum &T){memcpy(NUM,T.NUM,sizeof(NUM));L=T.L;flag=T.flag;}
BigNum(int n){memset(NUM,,sizeof(NUM));NUM[]=n;L=;while(NUM[L-]>=WIDE){NUM[L]+=NUM[L-]/WIDE;NUM[L-]%=WIDE;L++;}flag=;}
}; void Output(const BigNum T)
{
if(T.flag==) cout<<'-';
cout<<T.NUM[T.L-];
for(int i=T.L-;i>=;i--)
{
cout.width(DLEN);
cout.fill('');
cout<<T.NUM[i];
}
} BigNum Mult(const BigNum A,int B)
{
BigNum C(A);
int i,tmp,k=;
for(i=;i<C.L||k;i++)
{
tmp=C.NUM[i]*B+k;
k=tmp/WIDE;
C.NUM[i]=tmp%WIDE;
}
C.L=i;
return C;
} BigNum Div(const BigNum A,int B)
{
BigNum C(A);
int k=;
for(int i=C.L-;i>=;i--)
{
k=k*WIDE+C.NUM[i];
C.NUM[i]=k/B;
k%=B;
}
while(C.NUM[C.L-]==) C.L--;
return C;
} int n,sum,cnt;
int d[];
bool flag;
BigNum ans(); int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&d[i]);
if(d[i]==||d[i]>n-) flag=;
if(d[i]==-) continue;
sum+=d[i]-;
cnt++;
}
if(n==)
{
if(d[]==||d[]==-) printf("1\n");
else printf("0\n");
return ;
}
if(n==)
{
if((d[]==||d[]>)&&(d[]==||d[]>)) printf("1\n");
else printf("0\n");
return ;
}
if(flag)
{
printf("0\n");
return ;
}
for(int i=n--sum;i<=n-;i++)
ans=Mult(ans,i);
for(int i=;i<=n--sum;i++)
ans=Mult(ans,n-cnt);
for(int i=;i<=cnt;i++)
for(int j=;j<=d[i]-;j++)
ans=Div(ans,j);
Output(ans);
return ;
}

1005: [HNOI2008]明明的烦恼的更多相关文章

  1. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  2. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  3. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  4. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  5. 【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4981  Solved: 1941 Description ...

  6. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  7. BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合

    1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...

  8. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  9. BZOJ 1005: [HNOI2008]明明的烦恼(prufer数列)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 题意: Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标 ...

  10. 【BZOJ】1005: [HNOI2008]明明的烦恼(prufer编码+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 这里讲得挺清楚的:http://www.cnblogs.com/zhj5chengfeng/p ...

随机推荐

  1. redis使用方法

    redis缓存服务器笔记 redis是一个高性能的key-value存储系统,能够作为缓存框架和队列 但是由于他是一个内存内存系统,这些数据还是要存储到数据库中的 作为缓存框架: create/upd ...

  2. HDU 2103 Family Plan

    题目HDU 2103:http://acm.hdu.edu.cn/showproblem.php?pid=2103 Problem Description As far as we known,the ...

  3. CentOS7.3下Zabbix3.5之微信报警配置

    一.报警脚本放到服务端的 /usr/lib/zabbix/alertscripts/下      属组属主为zabbix zabbix      有执行权限vim weixinbaojing.py # ...

  4. LDAP相关操作注意事项

    lc.Modify(entry.DN, new LdapModification(LdapModification.REPLACE, new LdapAttribute("mDBUseDef ...

  5. 记录一个linux下批处理的代码

    DATA_DIR=/home/liupan/.navinsight/data/dataset_rec SHELL_DIR=/home/liupan/workspace/nvi_postprocessi ...

  6. Java微信公众平台开发(十)--微信用户信息的获取

    前面的文章有讲到微信的一系列开发文章,包括token获取.菜单创建等,在这一篇将讲述在微信公众平台开发中如何获取微信用户的信息,在上一篇我们有说道微信用户和微信公众账号之间的联系可以通过Openid关 ...

  7. 项目上传至Github

    到https://github.com/ 注册用户,然后点 Start a project,创建仓库 记住这个 地址. 再去 https://git-scm.com/downloads 下载git 安 ...

  8. Spring cloud Eureka 服务治理(注册服务提供者)

    搭建完成服务注册中心,下一步可以创建服务提供者并向注册中心注册服务. 接下来我们创建Spring Boot 应用将其加入Eureka服务治理体系中去. 直接使用签名章节创建hello服务项目改造: 1 ...

  9. es6-异步应用

    异步编程对 JavaScript 语言太重要.Javascript 语言的执行环境是“单线程”的,如果没有异步编程,根本没法用,非卡死不可.本章主要介绍 Generator 函数如何完成异步操作. 传 ...

  10. 构建第一个Spring Boot2.0应用之RequestMapping(四)

    在学习controller的时候,测试了在RequestMapping中,value参数中配置集合,实现不同的URL访问同一方法. 本章继续学习和测试RequestMapping的其他特性. 一.Pa ...