雅礼集训 Day7 T1 Equation 解题报告
Reverse
题目背景
小\(\text{G}\)有一个长度为\(n\)的\(01\)串\(T\),其中只有\(T_S=1\),其余位置都是\(0\)。现在小\(\text{G}\)可以进行若干次以下操作:
• 选择一个长度为\(K\)的连续子串(\(K\)是给定的常数),翻转这个子串。
对于每个\(i,i\in [1,n]\),小\(\text{G}\)想知道最少要进行多少次操作使得\(T_i=1\).特别的,有\(m\)个“禁止位置”,你需要保证在操作过程中\(1\)始终不在任何一个禁止位置上。
输入输出格式
输入格式
从文件reverse.in
中读入数据.
第一行四个整数\(n,K,m,S\).
接下来一行\(m\)个整数表示禁止位置。
输出格式
输出到文件reverse.out
中.
输出一行\(n\)个整数,对于第\(i\)个整数,如果可以通过若干次操作使得\(T_i=1\),输出最小操作次数,否则输出\(-1\).
说明
对于所有数据,有\(1≤n≤10^5,1≤S,k≤n,0≤m≤n\).
保证\(S\)不是禁止位置,但禁止位置可能有重复。
\(\text{Subtask1}(24\%), n≤10\).
\(\text{Subtask2}(22\%), n≤10^3\).
\(\text{Subtask3}(3\%), k=1\).
\(\text{Subtask4}(8\%), k=2\).
\(\text{Subtask5}(43\%)\), 没有特殊的约束。
题目其实并不难
发现可以连边直接bfs,可以拿到57pts的暴力分
发现边的数量很多,需要支持动态删点
用两颗平衡树分别维护位置为奇数时和位置为偶数时
然后每次找到可翻转的左边和右边,在平衡上二分,bfs然后删掉点就可以了
每个点只会被删掉一次,复制度差不多是\(O(nlogn)\)的
Code:
#include <cstdio>
#include <cstring>
#include <set>
const int N=1e5+10;
std::set <int> s1,s2;
std::set <int>::iterator it;
int n,k,m,s,l=1,r,q[N<<2],used[N],ans[N],lp,rp,d;
int min(int x,int y){return x<y?x:y;}
int max(int x,int y){return x>y?x:y;}
int main()
{
scanf("%d%d%d%d",&n,&k,&m,&s);
memset(ans,-1,sizeof(ans));
used[s]=1,q[++r]=s,ans[s]=0;
for(int p,i=1;i<=m;i++) scanf("%d",&p),used[p]=1;
for(int i=1;i<=n;i+=2)
{
if(!used[i]) s1.insert(i);
if(!used[i+1]) s2.insert(i+1);
}
while(l<=r)
{
int p=q[l++];
lp=max(p-k+1,max(k-p+1,1)),rp=min(p+k-1,min(2*n+1-k-p,n));
if(p-k&1)//s2
{
it=s2.lower_bound(lp);
while(it!=s2.end()&&(d=*it)<=rp)
{
q[++r]=d;
ans[d]=ans[p]+1;
it++;
s2.erase(d);
}
}
else
{
it=s1.lower_bound(lp);
while(it!=s1.end()&&(d=*it)<=rp)
{
q[++r]=d;
ans[d]=ans[p]+1;
it++;
s1.erase(d);
}
}
}
for(int i=1;i<=n;i++)
printf("%d ",ans[i]);
return 0;
}
2018.10.7
雅礼集训 Day7 T1 Equation 解题报告的更多相关文章
- 雅礼集训 Day6 T2 Equation 解题报告
Equation 题目描述 有一棵\(n\)个点的以\(1\)为根的树,以及\(n\)个整数变量\(x_i\).树上\(i\)的父亲是\(f_i\),每条边\((i,f_i)\)有一个权值\(w_i\ ...
- 雅礼集训 Day6 T1 Merchant 解题报告
Merchant 题目描述 有\(n\)个物品,第\(i\)个物品有两个属性\(k_i,b_i\),表示它在时刻\(x\)的价值为\(k_i\times x+b_i\). 当前处于时刻\(0\),你可 ...
- 「雅礼集训 2017 Day2」解题报告
「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...
- 「雅礼集训 2017 Day1」 解题报告
「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...
- 雅礼集训 Day3 T3 w 解题报告
w 题目背景 \(\frac 14\)遇到了一道水题,双完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607^2\)眼就切掉了这题,嘲讽了\(\frac 14 ...
- 雅礼集训 Day1 T3 画作 解题报告
画作 题目描述 小\(\mathrm{G}\)的喜欢作画,尤其喜欢仅使用黑白两色作画. 画作可以抽象成一个\(r\times c\)大小的\(01\)矩阵.现在小\(\mathrm{G}\)构思好了他 ...
- 雅礼集训 Day5 T3 题 解题报告
题 题目背景 由于出题人赶时间所以没办法编故事来作为背景. 题目描述 一开始有\(n\)个苹果,\(m\)个人依次来吃苹果,第\(i\)个人会尝试吃\(u_i\)或\(v_i\)号苹果,具体来说分三种 ...
- 雅礼集训 Day3 T2 u 解题报告
u 题目背景 \(\frac 14\) 遇到了一道水题,完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了一眼就切掉了这题,嘲讽了\(\frac 14\)一番就离开了. ...
- 雅礼集训 Day3 T2 v 解题报告
v 题目背景 \(\frac 14\)遇到了一道水题,又完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607\)眼就切掉了这题,嘲讽了\(\frac 14\) ...
随机推荐
- P3366 最小生成树【模板+Kruscal讲解】
此题数组大小非常重要 算法过程: 现将全部边按照权值(由小到大)排序. 按顺序(同上)考虑每条边,只要这条边和之前已选择的边不构成圈,就保留这条边,否则放弃这条边. 具体算法 成功选择(n-1)条边后 ...
- Spring框架基础2
Spring框架基础2 测试Spring的AOP思想和注解的使用 导包(在前面的基础上添加) SpringAOP名词解释 AOP编程思想:横向重复代码,纵向抽取:就是说多个地方重复的代码可以抽取出来公 ...
- 平衡二叉查找树 AVL 的实现
不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这个想法,平衡二叉树出现了. 平衡二叉树的定义 (A ...
- js三目运算符执行多个条件
三元运算符的结果语句可以执行多个操作,每个操作用逗号分隔就可以,例子如下: var a=1: a>5?(alert(1),alert(2)):(alert(3),alert(4))
- jira安装说明
阅读目录 1.1 jira说明 1.2 安装配置jira 1.3 web界面访问 1.4 创建第一个项目 1.5 参考文献 回到顶部 1.1 jira说明 JIRA是Atlassian公司出品的项目与 ...
- c++右值引用
右值 右值是相对与左值来说的. 左值是以变量的形式存在,指向一个指定的内存,可以对它取地址.右值就是不指向任何地方,它是暂时和短命的,不能对它取地址. 右值引用 把临时的.生命周期短的值,绑定到一个变 ...
- POJ:3185-The Water Bowls(枚举反转)
The Water Bowls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7402 Accepted: 2927 Descr ...
- SAPバリアント
SAPバリアント VARI バリアント VARID バリアント一覧 VARIT バリアントテキスト VARIS バリアント割当 TVARV バリアント変数(クライアント非依存) TVARVC バリ ...
- python面向对象的约束和自定义异常
基于人为来约束: 即人为主动抛出异常 class BaseMessage(object): def send(self,x1): """ 必须继承BaseMessage, ...
- unity2D技术学习与整理
目前有关unity2D的教程以及原理几乎都是国外的.我在这方面也是新手,看了一些例子有很多不懂的地方. 这个网站提供的教程很有参考价值 http://brackeys.com/ 还有这个 http:/ ...