Codeforces 527C Glass Carving (最长连续0变形+线段树)
Leonid wants to become a glass carver (the person who creates beautiful artworks by cutting the glass). He already has a rectangular w mm × h mm sheet of glass, a diamond glass cutter and lots of enthusiasm. What he lacks is understanding of what to carve and how.
In order not to waste time, he decided to practice the technique of carving. To do this, he makes vertical and horizontal cuts through the entire sheet. This process results in making smaller rectangular fragments of glass. Leonid does not move the newly made glass fragments. In particular, a cut divides each fragment of glass that it goes through into smaller fragments.
After each cut Leonid tries to determine what area the largest of the currently available glass fragments has. Since there appear more and more fragments, this question takes him more and more time and distracts him from the fascinating process.
Leonid offers to divide the labor — he will cut glass, and you will calculate the area of the maximum fragment after each cut. Do you agree?
Input
The first line contains three integers w, h, n (2 ≤ w, h ≤ 200 000, 1 ≤ n ≤ 200 000).
Next n lines contain the descriptions of the cuts. Each description has the form H y or V x. In the first case Leonid makes the horizontal cut at the distance y millimeters (1 ≤ y ≤ h - 1) from the lower edge of the original sheet of glass. In the second case Leonid makes a vertical cut at distance x (1 ≤ x ≤ w - 1) millimeters from the left edge of the original sheet of glass. It is guaranteed that Leonid won't make two identical cuts.
Output
After each cut print on a single line the area of the maximum available glass fragment in mm2.
Examples
Input
Copy
4 3 4
H 2
V 2
V 3
V 1
Output
Copy
8
4
4
2
Input
Copy
7 6 5
H 4
V 3
V 5
H 2
V 1
Output
Copy
28
16
12
6
4
Note
Picture for the first sample test:
递归
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; typedef long long ll;
const int maxn = * 1e5 + ; struct SegTree {
ll ls, rs, max0;
bool is_all0;
}segTree[][maxn<<]; void pushup(int root, int flag) {
SegTree &cur = segTree[flag][root], &lc = segTree[flag][root<<], &rc = segTree[flag][root<<|];
cur.ls = lc.ls + (lc.is_all0 ? rc.ls : );
cur.rs = rc.rs + (rc.is_all0 ? lc.rs : );
cur.max0 = max(lc.rs + rc.ls, max(lc.max0, rc.max0));
cur.is_all0 = lc.is_all0 && rc.is_all0;
} void build(int L, int R, int root, int flag) {
if (L == R) {
segTree[flag][root].ls = segTree[flag][root].rs = segTree[flag][root].max0 = ;
segTree[flag][root].is_all0 = true;
return;
}
int mid = (L + R)>>;
build(L, mid, root<<, flag);
build(mid + , R, root<<|, flag);
pushup(root, flag);
} void update_node(int L, int R, int root, int pos, int flag) {
if (L == R) {
segTree[flag][root].ls = segTree[flag][root].rs = segTree[flag][root].max0 = ;
segTree[flag][root].is_all0 = false;
return;
}
int mid = (L + R)>>;
if (pos <= mid) {
update_node(L, mid, root<<, pos, flag);
}
else {
update_node(mid + , R, root<<|, pos, flag);
}
pushup(root, flag);
} ll query(int L, int R, int root, int qL, int qR, int flag) {
if (qL <= L && R <= qR) {
return segTree[flag][root].max0;
}
int mid = (L + R)>>;
ll temp = ;
if (qL <= mid) {
temp = max(temp, query(L, mid, root<<, qL, qR, flag));
}
if (qR > mid) {
temp = max(temp, query(mid + , R, root<<|, qL, qR, flag));
}
return temp;
} int main()
{
int W, H, q, x;
char c[];
while (scanf("%d %d %d", &W, &H, &q) == ) {
build(, W - , , );
build(, H - , , );
while (q--) {
scanf("%s %d", c, &x);
if (c[] == 'V') {
update_node(, W - , , x, );
}
else {
update_node(, H - , , x, );
}
printf("%I64d\n", (query(, W - , , , W - , ) + ) * (query(, H - , , , H - , ) + ));
}
}
}
非递归
#include <iostream>
#include <cstdio>
#include <cmath>
#define maxn 200001
using namespace std;
int L[maxn<<][];//从左开始连续零个数
int R[maxn<<][];//从右
int Max[maxn<<][];//区间最大连续零
bool Pure[maxn<<][];//是否全零
int M[];
void PushUp(int rt,int k){//更新rt节点的四个数据
Pure[rt][k]=Pure[rt<<][k]&&Pure[rt<<|][k];
Max[rt][k]=max(R[rt<<][k]+L[rt<<|][k],max(Max[rt<<][k],Max[rt<<|][k]));
L[rt][k]=Pure[rt<<][k]?L[rt<<][k]+L[rt<<|][k]:L[rt<<][k];
R[rt][k]=Pure[rt<<|][k]?R[rt<<|][k]+R[rt<<][k]:R[rt<<|][k];
}
void Build(int n,int k){//建树,赋初值
for(int i=;i<M[k];++i) L[M[k]+i][k]=R[M[k]+i][k]=Max[M[k]+i][k]=Pure[M[k]+i][k]=i<n;
for(int i=M[k]-;i>;--i) PushUp(i,k);
}
void Change(int X,int k){//切割,更新
int s=M[k]+X-;
Pure[s][k]=Max[s][k]=R[s][k]=L[s][k]=;
for(s>>=;s;s>>=) PushUp(s,k);
}
int main(void)
{
int w,h,n;
while(cin>>w>>h>>n){
//以下3行,找出非递归线段树的第一个数的位置。
M[]=M[]=;
while(M[]<h-) M[]<<=;
while(M[]<w-) M[]<<=;
//建树
Build(h-,);Build(w-,); for(int i=;i<n;++i){
//读取数据
char x;int v;
scanf(" %c%d",&x,&v);
//切割
x=='H'?Change(v,):Change(v,);
//输出
printf("%I64d\n",(long long)(Max[][]+)*(Max[][]+));
}
}
return ;
}
其他解法
https://blog.csdn.net/zearot/article/details/44759437
Codeforces 527C Glass Carving (最长连续0变形+线段树)的更多相关文章
- CodeForces 527C. Glass Carving (SBT,线段树,set,最长连续0)
原题地址:http://codeforces.com/problemset/problem/527/C Examples input H V V V output input H V V H V ou ...
- Codeforces 527C Glass Carving(Set)
意甲冠军 片w*h玻璃 其n斯普利特倍 各事业部为垂直或水平 每个分割窗格区域的最大输出 用两个set存储每次分割的位置 就能够比較方便的把每次分割产生和消失的长宽存下来 每次分割后剩下 ...
- Codeforces 527C Glass Carving
vjudge 上题目链接:Glass Carving 题目大意: 一块 w * h 的玻璃,对其进行 n 次切割,每次切割都是垂直或者水平的,输出每次切割后最大单块玻璃的面积: 用两个 set 存储每 ...
- CF 527C Glass Carving
数据结构维护二维平面 首先横着切与竖着切是完全没有关联的, 简单贪心,最大子矩阵的面积一定是最大长*最大宽 此处有三种做法 1.用set来维护,每次插入操作寻找这个点的前驱和后继,并维护一个计数数组, ...
- CF 150E Freezing with Style [长链剖分,线段树]
\(sol:\) 给一种大常数 \(n \log^2 n\) 的做法 考虑二分,由于是中位数,我们就二分这个中位数,\(x>=mid\)则设为 \(1\),否则为 \(-1\) 所以我们只需要找 ...
- 最大矩阵覆盖权值--(静态连续最大子段 (线段树) )-HDU(6638)Snowy Smile
这题是杭电多校2019第六场的题目 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意:给你平面上n个点,每个点都有权值(有负权),让你计算一 ...
- Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)
Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...
- Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)
题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...
- D. Babaei and Birthday Cake---cf629D(最长上升子序列和+线段树优化)
http://codeforces.com/problemset/problem/629/D 题目大意: 我第一反应就是求最长上升子序列和 但是数值太大了 不能直接dp求 可以用线段树优化一下 ...
随机推荐
- css知多少(4)——解读浏览器默认样式(转)
css知多少(4)——解读浏览器默认样式 上一节<css知多少(3)——样式来源与层叠规则>介绍了样式的五种来源,咱们再通过一张图回顾一下. 对于上面的三层,咱们大概都比较熟悉了.下面 ...
- vue-resource基础介绍
1.vue-resource 的请求api是按照rest风格设计的,它提供了7种请求api get(url, [data], [options]); head(url,[data],[options] ...
- nginx负载均衡, 配置地址带端口
nginx.conf 配置如下: upstream wlcf.dev.api { server 127.0.0.1:8833; server 127.0.0.2:8833; } server { l ...
- 客户注册功能,发短信功能分离 通过ActiveMQ实现
客户注册功能,发短信功能分离 通过ActiveMQ 配置链接工厂, 配置session缓存工厂(引入链接工厂) 2.配置模板对象JmsTemplate 引入缓存工厂 指定消息模式(队列,发布和订 ...
- 杭电acm 1037题
本题应该是迄今为止最为简单的一道题,只有一组输入,输出也简单.... /****************************************** 杭电acm 1037题 已AC ***** ...
- c# 新中新二代身份证阅读,包含头像,支持华视
需要用到dll和文件: 其中3个dll文件是需要调用的dll,license.dat文件为解压图片的授权文件 以下是需要用到的dll里面的方法: /************************端口 ...
- 前端学习笔记2017.6.21-html是个什么东西
html有两种意思,html语言和html格式 html语言是一种面向人类的计算机语言,这是啥意思?人类用html这种语言描述出一个网页的样子,浏览器解析这个语言并展示出来. html格式是一种文件格 ...
- 85D Sum of Medians
传送门 题目 In one well-known algorithm of finding the k-th order statistics we should divide all element ...
- Java分层概念(转)
Java分层概念(转) 对于分层的概念,似乎之间简单的三层,多了,就有点难以区分了,所以收藏了这个. ervice是业务层 action层即作为控制器 DAO (Data Access Object) ...
- oracle安装和使用问题解决方案
1.Enter the full pathname for java.exe 要输入的是32位系统的jdk中的java.exe路径,比如 C:\Program Files\Java\jdk1.6.0 ...