Elasticsearch支持最直方图聚合,它在数字字段自动创建桶,并会扫描全部文档,把文档放入相应的桶中。这个数字字段既可以是文档中的某个字段,也可以通过脚本创建得出的。

桶的筛选规则

举个例子,有一个price字段,这个字段描述了商品的价格,现在想每隔5就创建一个桶,统计每隔区间都有多少个文档(商品)。

如果有一个商品的价格为32,那么它会被放入30的桶中,计算的公式如下:

rem = value % interval
if (rem < 0) {
rem += interval
}
bucket_key = value - rem

通过上面的方法,就可以确定文档属于哪一个桶。

不过也有一些问题存在,由于上面的方法是针对于整型数据的,因此如果字段是浮点数,那么需要先转换成整型,再调用上面的方法计算。问题来了,正数还好,如果该值是负数,就会出现计算出错。比如,一个字段的值为-4.5,在进行转换整型时,转换成了-4。那么按照上面的计算,它就会放入-4的桶中,但是其实-4.5应该放入-6的桶中。

min_doc_count过滤

聚合的dsl如下:

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50
}
}
}
}

得到的数据为:

{
"aggregations": {
"prices" : {
"buckets": [
{
"key": 0,
"doc_count": 2
},
{
"key": 50,
"doc_count": 4
},
{
"key": 100,
"doc_count": 0
},
{
"key": 150,
"doc_count": 3
}
]
}
}
}

上面的数据中,100-150是没有文档的,但是却显示为0.如果不想要显示count为0的桶,可以通过min_doc_count来设置。

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"min_doc_count" : 1
}
}
}
}

这样返回的数据,就不会出现为0的了。

{
"aggregations": {
"prices" : {
"buckets": [
{
"key": 0,
"doc_count": 2
},
{
"key": 50,
"doc_count": 4
},
{
"key": 150,
"doc_count": 3
}
]
}
}
}

extend_bounds,指定最小值和最大值边界

默认情况下,ES中的histogram聚合起始都是自动的,比如price字段,如果没有商品的价钱在0-5之间,0这个桶就不会显示。如果最便宜的商品是11,那么第一个桶就是10.

可以通过设置extend_bounds强制规定最小值和最大值,但是要求必须min_doc_count不能大于0,不然即便是规定了边界,也不会返回。

另外需要注意的是,如果规定的extend_bounds.min要大于文档中的最小值,那么就会按照文档中的最小值来(extend_bounds.max也是如此)。

比如下面的这个例子,规定的extend_bounds.min和max分别是40和50,但是文档中含有比40还要小的数据,因此桶的定义仍然是按照文档中的数据来。

order排序

排序大同小异,可以按照_key的名字排序:

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"order" : { "_key" : "desc" }
}
}
}
}

也可以按照文档的数目:

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"order" : { "_count" : "asc" }
}
}
}
}

或者指定排序的聚合:

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"order" : { "price_stats.min" : "asc" }
},
"aggs" : {
"price_stats" : { "stats" : {} }
}
}
}
}

keyed设置返回的方式

正常返回的数据如上面所示,是按照数组的方式返回。如果要按照名字返回,可以设置keyed为true

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"keyed" : true
}
}
}
}

那么返回的数据就为:

{
"aggregations": {
"prices": {
"buckets": {
"0": {
"key": 0,
"doc_count": 2
},
"50": {
"key": 50,
"doc_count": 4
},
"150": {
"key": 150,
"doc_count": 3
}
}
}
}
}

缺省的值

缺省值通过MissingValue设置:

{
"aggs" : {
"quantity" : {
"histogram" : {
"field" : "quantity",
"interval": 10,
"missing": 0
}
}
}
}

Elasticsearch聚合 之 Histogram 直方图聚合的更多相关文章

  1. Elasticsearch聚合 Date Histogram聚合

    转 http://www.cnblogs.com/xing901022/p/4951603.html Elasticsearch的聚合主要分成两大类:metric和bucket,2.0中新增了pipe ...

  2. Elasticsearch聚合 之 Range区间聚合

    Elasticsearch提供了多种聚合方式,能帮助用户快速的进行信息统计与分类,本篇主要讲解下如何使用Range区间聚合. 最简单的例子,想要统计一个班级考试60分以下.60到80分.80到100分 ...

  3. ElasticSearch 2 (35) - 信息聚合系列之近似聚合

    ElasticSearch 2 (35) - 信息聚合系列之近似聚合 摘要 如果所有的数据都在一台机器上,那么生活会容易许多,CS201 课商教的经典算法就足够应付这些问题.但如果所有的数据都在一台机 ...

  4. elasticsearch聚合之bucket terms聚合

    目录 1. 背景 2. 前置条件 2.1 创建索引 2.2 准备数据 3. 各种聚合 3.1 统计人数最多的2个省 3.1.1 dsl 3.1.2 运行结果 3.2 统计人数最少的2个省 3.2.1 ...

  5. Elasticsearch学习系列四(聚合搜索)

    聚合分析 聚合分析是数据库中重要的功能特性,完成对一个查询的集中数据的聚合计算.如:最大值.最小值.求和.平均值等等.对一个数据集求和,算最大最小值等等,在ES中称为指标聚合,而对数据做类似关系型数据 ...

  6. Flask聚合函数(基本聚合函数、分组聚合函数、去重聚合函数))

    Flask聚合函数 1.基本聚合函数(sun/count/max/min/avg) 使用聚合函数先导入:from sqlalchemy import func 使用方法: sun():func.sum ...

  7. 把 Elasticsearch 当数据库使:聚合后排序

    使用 https://github.com/taowen/es-monitor 可以用 SQL 进行 elasticsearch 的查询.有的时候分桶聚合之后会产生很多的桶,我们只对其中部分的桶关心. ...

  8. Elasticsearch 聚合统计与SQL聚合统计语法对比(一)

    Es相比关系型数据库在数据检索方面有着极大的优势,在处理亿级数据时,可谓是毫秒级响应,我们在使用Es时不仅仅进行简单的查询,有时候会做一些数据统计与分析,如果你以前是使用的关系型数据库,那么Es的数据 ...

  9. Elasticsearch 第六篇:聚合统计查询

    h2.post_title { background-color: rgba(43, 102, 149, 1); color: rgba(255, 255, 255, 1); font-size: 1 ...

随机推荐

  1. java servlet之过滤器1(解决jsp之间POST方式数据传递乱码)

    首先,看看没有解决乱码的效果,新建两个jsp页面(a.jsp跳转到b.jsp). <form action="b.jsp" method="post"&g ...

  2. Courier-MTA 0.72 发布,电子邮件系统

    Courier-MTA 0.72 增加了 ratefilter,用来限制速率的邮件过滤器. Courier 是一个优秀的电子信件系统,功能上它远比 Qmail. Postfix 等我们已经熟知的系统完 ...

  3. seajs 源码阅读笔记

    代码概览 src目录文件列表如下: 代码以模块化的方式来组织,构建的时候会合并为一个js文件(sea.js 或 sea-debug.js),其中,intro.js和 outro.js 分别是这个js文 ...

  4. openfire/spark/asmack 环境调试纪要

    项目需要简单搭建openfire/spark/asmack的环境及程序demo,本文简单记录以免遗忘. 1.openfire/spark 是java编写的xmpp服务器及PC客户端,安装过程相当简单一 ...

  5. Aoite 系列(01) - 比 Dapper 更好用的 ORM

    Aoite 是一个适于任何 .Net Framework 4.0+ 项目的快速开发整体解决方案.Aoite.Data 适用于市面上大多数的数据库提供程序,通过统一封装,可以在日常开发中简单便捷的操作数 ...

  6. 移动App开发需要更多的PaaS平台而不是IaaS

    时代的变迁,创业的大潮,越来越多的人关注了有点开发,越来越多的人了解了互联网服务术语:PaaS.IaaS.SaaS.BaaS等.今天大家在开发App的时候这么多复杂的云服务如何来选择呢? IaaS服务 ...

  7. FusionCharts简单教程(三)-----如何自定义图表上的工具提示

    最近有蛮多人总是问我这个FusionCharts制表的问题,帮助他们解决之后,在昨晚发现以前整理的笔记中有这个简单教程,而且以前也发表了几篇这个博文,所以就将其全部上传上来供别人参考.如有不正确之处望 ...

  8. 解如下方程(java实现)

    n                              (m=1) f(m,n)=  m                              (n=1) f(m-1,n)+f(m,n-1) ...

  9. video.js html5 视频播放器

    我个人感觉很不错 https://github.com/videojs/video.js <head> <title>Video.js | HTML5 Video Player ...

  10. 浅析SQL Server实现分布式事务的两阶段提交协议2PC

    不久之前团队有个新人问我一个很重要的web服务接口如何保证事务的问题.因为涉及到跨库事务,当时我只是回答目前我们的SOA框架都不支持跨库事务.然后就问到了数据库跨库事务是如何实现的,我只能凭印象含糊回 ...