1.start-all.sh脚本分析

图1 start-all.sh部分内容

我们可以从start-all.sh脚本源文件中看到它其实是start-master.sh和start-slaves.sh两个脚本的组合。

图2 start-master.sh部分内容

由图2可见,start-master.sh最终是通过类org.apache.spark.deploy.master.Master来完成的,待会儿我们分析.

图3 start-slaves.sh部分内容

由图3可见,start-slaves.sh是由slaves.sh和start-slave.sh来组成的。

图4 slaves.sh和start-slave.sh部分内容

由图4可见,可以看到slave节点是由org.apache.spark.deploy.worker.Worker类来完成的,master和slave的start都是由spark-daemon.sh脚本来运行的

2.具体执行类分析

脚本最后的执行者其实是类。我们具体看一下Master、Worker的执行过程。

2.1 Master节点启动分析

Master.scala文件由一个Master类和其伴生对象组成。

从main函数开始,主要启动Rpc环境,目前Spark中提供了两种Rpc环境:Akka和Netty

def main(argStrings: Array[String]) {

SignalLogger.register(log)

val conf = new SparkConf

//命令转换器,将通过脚本传递过来的参数转化为类Master的变量

val args = new MasterArguments(argStrings, conf)

//启动master并返回一个三元组:(1)Master Rpc环境(2)web UI绑定的端口号(3)REST server绑定的端口号

val (rpcEnv, _, _) = startRpcEnvAndEndpoint(args.host, args.port, args.webUiPort, conf)

//等待直到RpcEnv退出

rpcEnv.awaitTermination()

}

(1)master参数主要是通过MasterArguments类来完成的,如下所示,由代码可见master默认的端口是7070,web端口是8080

图5 Master转换类

(2)通过startRpcEnvAndEndpoint方法实现启动Master并返回三元组,由Master RpcEnv、绑定的web UI端口号和REST server绑定的端口号

def startRpcEnvAndEndpoint(

host: String,

port: Int,

webUiPort: Int,

conf: SparkConf): (RpcEnv, Int, Option[Int]) = {

val securityMgr = new SecurityManager(conf)

//通过RpcEnvFactory生成RpcEnv,这里默认使用的是NettyRpcEnvFactory

val rpcEnv = RpcEnv.create(SYSTEM_NAME, host, port, conf, securityMgr)

//返回一个Master的远程调用masterEndpoint

val masterEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME,

new Master(rpcEnv, rpcEnv.address, webUiPort, securityMgr, conf))

//绑定端口的请求

val portsResponse = masterEndpoint.askWithRetry[BoundPortsResponse](BoundPortsRequest)

(rpcEnv, portsResponse.webUIPort, portsResponse.restPort)

}

2.2 Worker节点启动分析

Worker节点的启动和Master的很类似,如下所示:

def main(argStrings: Array[String]) {

SignalLogger.register(log)

val conf = new SparkConf

//命令转换器,将通过脚本传递过来的参数转化为类Worker的变量

val args = new WorkerArguments(argStrings, conf)

//启动Worker Rpc环境

val rpcEnv = startRpcEnvAndEndpoint(args.host, args.port, args.webUiPort, args.cores,

args.memory, args.masters, args.workDir)

//等待直到RpcEnv退出

rpcEnv.awaitTermination()

}

(1)启动Worker Rpc环境如下所示

def startRpcEnvAndEndpoint(

host: String,

port: Int,

webUiPort: Int,

cores: Int,

memory: Int,

masterUrls: Array[String],

workDir: String,

workerNumber: Option[Int] = None,

conf: SparkConf = new SparkConf): RpcEnv = {

// The LocalSparkCluster runs multiple local sparkWorkerX RPC Environments

//LocalSparkCluster启动多个本地的sparkWorker RPC环境,系统名为sparkWorker1,sparkWorker2.。。

val systemName = SYSTEM_NAME + workerNumber.map(_.toString).getOrElse("")

val securityMgr = new SecurityManager(conf)

//通过RpcEnvFactory生成RpcEnv,这里默认使用的是NettyRpcEnvFactory

val rpcEnv = RpcEnv.create(systemName, host, port, conf, securityMgr)

//从RpcAddress得到master的地址,即从spark://host:port解析得到host和port封装到RpcAddress

val masterAddresses = masterUrls.map(RpcAddress.fromSparkURL(_))

//返回一个Worker的远程调用

rpcEnv.setupEndpoint(ENDPOINT_NAME, new Worker(rpcEnv, webUiPort, cores, memory,

masterAddresses, systemName, ENDPOINT_NAME, workDir, conf, securityMgr))

rpcEnv

}

下一篇我们继续了解Spark Rpc,了解Master、Worker和Client是如何通信的。

【原】Spark Standalone如何通过start-all.sh启动集群的更多相关文章

  1. Spark Tachyon编译部署(含单机和集群模式安装)

    Tachyon编译部署 编译Tachyon 单机部署Tachyon 集群模式部署Tachyon 1.Tachyon编译部署 Tachyon目前的最新发布版为0.7.1,其官方网址为http://tac ...

  2. spark第三篇:Cluster Mode Overview 集群模式预览

    Spark applications run as independent sets of processes on a cluster, coordinated by the SparkContex ...

  3. Spark集群管理器介绍

    Spark可以运行在各种集群管理器上,并通过集群管理器访问集群中的其他机器.Spark主要有三种集群管理器,如果只是想让spark运行起来,可以采用spark自带的独立集群管理器,采用独立部署的模式: ...

  4. 【原】Spark Standalone模式

    Spark Standalone模式 安装Spark Standalone集群 手动启动集群 集群创建脚本 提交应用到集群 创建Spark应用 资源调度及分配 监控与日志 与Hadoop共存 配置网络 ...

  5. Spark Standalone

    环境:CentOS 6.6 x64  选用Spark版本 1.4.1.Zookeeper 3.4.6 一.安装 1.Spark运行模式 Local:使用于windows和linux平台(多用于测试,细 ...

  6. Spark standalone运行模式

    Spark Standalone 部署配置 Standalone架构 手工启动一个Spark集群 https://spark.apache.org/docs/latest/spark-standalo ...

  7. Spark standalone模式的安装(spark-1.6.1-bin-hadoop2.6.tgz)(master、slave1和slave2)

     前期博客  Spark运行模式概述 Spark standalone简介与运行wordcount(master.slave1和slave2) 开篇要明白 (1)spark-env.sh 是环境变量配 ...

  8. [会装]Spark standalone 模式的安装

    1. 简介 以standalone模式安装spark集群bin运行demo. 2.环境和介质准备 2.1 下载spark介质,根据现有hadoop的版本选择下载,我目前的环境中的hadoop版本是2. ...

  9. 04、Spark Standalone集群搭建

    04.Spark Standalone集群搭建 4.1 集群概述 独立模式是Spark集群模式之一,需要在多台节点上安装spark软件包,并分别启动master节点和worker节点.master节点 ...

随机推荐

  1. Asp.net自带导出方法

    ///datatable数据源 filename绝对路径 如:E:\\***.xls DataTable.WriteXml(fileName)

  2. 关于为什么window.frames[0].src不能获取src

    在DOM文档对象模型中,window对象处于最高层,而框架除了是当前窗体的一个节点外,本身也是独立window对象,当frames作为window对象时,有name属性, 而没有src属性,只有作为节 ...

  3. linux点滴:NFS

    介绍 NFS,Network File System,网络文件系统.主要功能是通过网络让不同的主机系统间共享资源,类似于windows下的文件共享.适用于互联网中小型企业. 工作原理 客户端发送请求 ...

  4. [Python][flask][flask-wtf]关于flask-wtf中API使用实例教程

    简介:简单的集成flask,WTForms,包括跨站请求伪造(CSRF),文件上传和验证码. 一.安装(Install) 此文仍然是Windows操作系统下的教程,但是和linux操作系统下的运行环境 ...

  5. 数组有N+M个数字, 数字的范围为1 ... N, 打印重复的元素, 要求O(M + N), 不可以用额外的空间

    数组有N+M个数字, 数字的范围为1 ... N, 打印重复的元素, 要求O(M + N), 不可以用额外的空间 1.题目中要求我们不能使用额外的空间,那么我们能采用在原数组上做文章,这里的重点是如何 ...

  6. 开发设计模式(五)单例模式(Singleton Pattern)

    http://blog.sina.com.cn/s/blog_89d90b7c0101805m.html 单例模式:意思就是只有一个实例.单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提 ...

  7. 《javascript高级程序设计》对象图

    1.原型链图 2.作用域链图 3.继承

  8. C语言预处理运算符

    转自C语言预处理运算符 预处理还需要运算符?有没有搞错? ^_^, 没有搞错,预处理是有运算符,而且还不止一个: #(单井号)    -- 字符串化运算符. ##(双井号 )-- 连接运算符 #@   ...

  9. Spring+MyBatis实践—登录和权限控制

    1.实现用户登录功能: 通过session来实现用户登录功能.在用户登录时,将用户的相关信息放在HttpSession对象用,其中HttpSession对象可以通过HttpServletRequest ...

  10. 解读分库分表中间件Sharding-JDBC

    [编者按]数据库分库分表从互联网时代开启至今,一直是热门话题.在NoSQL横行的今天,关系型数据库凭借其稳定.查询灵活.兼容等特性,仍被大多数公司作为首选数据库.因此,合理采用分库分表技术应对海量数据 ...