Description

Vasya’s dad is good in maths. Lately his favorite objects have been "beautiful" directed graphs. Dad calls a graph "beautiful" if all the following conditions are true:

  • The graph contains exactly \(N\) vertices and \(N−1\) edges.
  • Exactly one vertex has no entering edges.
  • The graph contains no directed cycles.

Dad calls two "beautiful" graphs isomorphic, if the vertices of the first graph can be renumbered in such way that it turns into the second one.

Dad picks an integer \(N\), stocks up blank paper, and draws a "beautiful" graph on each sheet. He verifies that no two drawn graphs are isomorphic.

Given the number \(N\), you are to find the number of sheets that Vasya's dad has to stock up.

Input

Input contains the single integer \(N (1 \le N \le 50)\).

Output

Output the number of "beautiful" graphs with \(N\) vertices.

Sample Input

3

Sample Output

9

题目大意——求\(N\)个点有标号的有根树的数目是多少。

假设\(a_n\)是\(n\)个点的无标号有根树的数目,则有以下的公式:

\[a_n = \sum_{\sum_{i = 1}^{n-1}}[\prod_{k=1}^{n-1}\binom{a_k+c_k-1}{c_k}]
\]

其中\(c_k\)表示根节点的子树中大小为\(i\)的子树有多少个。

为什么是\(\binom{a_k+c_k-1}{c_k}\),这是个可重组合公式。我们可以这样考虑,我们现在有\(a_k\)中子树可以选,我们可以从中选出\(c_k\)个。那么我们相当于$$\sum_{i = 1}^{a_k}x_i = c_k$$的非负整数解的方案数。也就等价于

\[\sum_{i = 1}^{a_k}x_i = c_k+a_k$$的正整数解的方案数。使用隔板法,不难得出公式
$$\binom{a_k+c_k-1}{a_k-1} = \binom{a_k+c_k-1}{c_k}\]

再用下乘法原理,上述公式就得证了。但是复杂度太高,虽然打表依旧可过。然后我们可以利用生成函数优化公式(母函数),然而这一块我们看懂。wtz说了用了很高深的解析组合的公式。希望以后学了后我能够看懂,先记在这里。

设$$A(x) = \sum_{n = 0}{\infty}a_nxn$$

基于上述分析可以迅速(tm那里迅速了)得到

\[A(x) = x \times e^{\sum_{r = 1}^{\infty}A(x^r)}
\]

于是就可推导出

\[a_{n+1} = \frac{1}{n} \times \sum_{i = 1}^n(i \times a_i \times \sum_{j=1}^{\lfloor n/i \rfloor}a_{n+1-i \times j})
\]

wtz还告诉了我假如树无根,那么也有公式:

  • 当\(n\)是奇数时,答案为$$a_n-\sum_{1 \le i \le \frac{n}{2}}a_ia_{n-i}$$
  • 当\(n\)是偶数时,答案为$$a_n-\sum_{1 \le i \le n}a_ia_{n-1}+\frac{1}{2}a_{\frac{n}{2}}(a_{\frac{n}{2}}+1)$$

然后我就用java(因为要高精度)对着公式打,就ac了。

import java.math.*;
import java.util.*;
public class Main
{
static final int maxn = 55;
static BigInteger A[] = new BigInteger[maxn]; static int N;
public static void main(String args[])
{
Scanner cin = new Scanner(System.in);
N = cin.nextInt();
A[1] = BigInteger.valueOf(1);
A[2] = BigInteger.valueOf(1);
A[3] = BigInteger.valueOf(2);
for (int n = 3;n < N;++n)
{
A[n+1] = BigInteger.ZERO;
for (int i = 1;i <= n;++i)
{
BigInteger res; res = BigInteger.ZERO;
for (int j = 1;j <= n/i;++j) res = res.add(A[n+1-i*j]);
A[n+1] = A[n+1].add(res.multiply(A[i]).multiply(BigInteger.valueOf(i)));
}
A[n+1] = A[n+1].divide(BigInteger.valueOf(n));
}
System.out.println(A[N]);
}
}

Ural1387 Vasya's Dad的更多相关文章

  1. Milliard Vasya's Function-Ural1353动态规划

    Time limit: 1.0 second Memory limit: 64 MB Vasya is the beginning mathematician. He decided to make ...

  2. CF460 A. Vasya and Socks

    A. Vasya and Socks time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  3. 递推DP URAL 1353 Milliard Vasya's Function

    题目传送门 /* 题意:1~1e9的数字里,各个位数数字相加和为s的个数 递推DP:dp[i][j] 表示i位数字,当前数字和为j的个数 状态转移方程:dp[i][j] += dp[i-1][j-k] ...

  4. Codeforces Round #281 (Div. 2) D. Vasya and Chess 水

    D. Vasya and Chess time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  5. Codeforces Round #281 (Div. 2) C. Vasya and Basketball 二分

    C. Vasya and Basketball time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. codeforces 676C C. Vasya and String(二分)

    题目链接: C. Vasya and String time limit per test 1 second memory limit per test 256 megabytes input sta ...

  7. Where is Vasya?

    Where is Vasya? Vasya stands in line with number of people p (including Vasya), but he doesn't know ...

  8. Codeforces Round #324 (Div. 2) C. Marina and Vasya 贪心

    C. Marina and Vasya Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/pr ...

  9. Codeforces Round #322 (Div. 2) A. Vasya the Hipster 水题

    A. Vasya the Hipster Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/581/p ...

随机推荐

  1. 五个在XML文档中预定义好的实体

    下面是五个在XML文档中预定义好的实体: < < 小于号 > > 大于号 & & 和 &apos; ' 单引号 " " 双引号 实体 ...

  2. JS学习笔记——标准对象

    一.对象 在js中万物皆对象. 二.对象类型 number.string.boolean.undefined.function.object等 用typeof来获取对象的类型 如: alert( ty ...

  3. MongoDB 的分组操作 In C#

    C#对mongodb的分组查询操作,主要通过脚本或Aggregate方法来实现,以下通过一些实例作解析: 参考资料:http://www.tuicool.com/articles/2iqUZj   h ...

  4. Android 百度地图开发之一(Hello BaiDu Map)

    之前也接触过百度地图的开发,但那是在网上找的案例或代码,而且是比较老的版本.打算重新学习一下百度地图的开发. 本次使用的百度地图的版本是 Android SDK v3.0.0 本篇文章主要讲述百度地图 ...

  5. LeetCode初体验—twoSum

    今天注册了大名鼎鼎的LeetCode,做了一道最简单的算法题目: Given an array of integers, return indices of the two numbers such ...

  6. Ubuntu将程序图标加到启动器

    问题: Ubuntu中安装一些程序的时候图标可能没有放到启动器中,不方便使用. 解决问题: 因为FileZilla这个程序是直接解压缩之后便可以使用的,每次都需要到文件所在目录Filezilla/bi ...

  7. ios常用的一些类库

    在网上收集到的 一:第三方插件 1:基于响应式编程思想的oc 地址:https://github.com/ReactiveCocoa/ReactiveCocoa 2:hud提示框 地址:https:/ ...

  8. Objective-C 学习笔记(Day 3,下)

    ------------------------------------------- 封装概念及其原理 一个Gun类的例子来详细说明这一环节: #import <Foundation/Foun ...

  9. [RMQ] [线段树] POJ 3368 Frequent Values

    一句话,多次查询区间的众数的次数 注意多组数据!!!! RMQ方法: 预处理 i 及其之前相同的数的个数 再倒着预处理出 i 到不是与 a[i] 相等的位置之前的一个位置, 查询时分成相同的一段和不同 ...

  10. 鼠标事件(window.onload的自己的错误)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...