Description

Vasya’s dad is good in maths. Lately his favorite objects have been "beautiful" directed graphs. Dad calls a graph "beautiful" if all the following conditions are true:

  • The graph contains exactly \(N\) vertices and \(N−1\) edges.
  • Exactly one vertex has no entering edges.
  • The graph contains no directed cycles.

Dad calls two "beautiful" graphs isomorphic, if the vertices of the first graph can be renumbered in such way that it turns into the second one.

Dad picks an integer \(N\), stocks up blank paper, and draws a "beautiful" graph on each sheet. He verifies that no two drawn graphs are isomorphic.

Given the number \(N\), you are to find the number of sheets that Vasya's dad has to stock up.

Input

Input contains the single integer \(N (1 \le N \le 50)\).

Output

Output the number of "beautiful" graphs with \(N\) vertices.

Sample Input

3

Sample Output

9

题目大意——求\(N\)个点有标号的有根树的数目是多少。

假设\(a_n\)是\(n\)个点的无标号有根树的数目,则有以下的公式:

\[a_n = \sum_{\sum_{i = 1}^{n-1}}[\prod_{k=1}^{n-1}\binom{a_k+c_k-1}{c_k}]
\]

其中\(c_k\)表示根节点的子树中大小为\(i\)的子树有多少个。

为什么是\(\binom{a_k+c_k-1}{c_k}\),这是个可重组合公式。我们可以这样考虑,我们现在有\(a_k\)中子树可以选,我们可以从中选出\(c_k\)个。那么我们相当于$$\sum_{i = 1}^{a_k}x_i = c_k$$的非负整数解的方案数。也就等价于

\[\sum_{i = 1}^{a_k}x_i = c_k+a_k$$的正整数解的方案数。使用隔板法,不难得出公式
$$\binom{a_k+c_k-1}{a_k-1} = \binom{a_k+c_k-1}{c_k}\]

再用下乘法原理,上述公式就得证了。但是复杂度太高,虽然打表依旧可过。然后我们可以利用生成函数优化公式(母函数),然而这一块我们看懂。wtz说了用了很高深的解析组合的公式。希望以后学了后我能够看懂,先记在这里。

设$$A(x) = \sum_{n = 0}{\infty}a_nxn$$

基于上述分析可以迅速(tm那里迅速了)得到

\[A(x) = x \times e^{\sum_{r = 1}^{\infty}A(x^r)}
\]

于是就可推导出

\[a_{n+1} = \frac{1}{n} \times \sum_{i = 1}^n(i \times a_i \times \sum_{j=1}^{\lfloor n/i \rfloor}a_{n+1-i \times j})
\]

wtz还告诉了我假如树无根,那么也有公式:

  • 当\(n\)是奇数时,答案为$$a_n-\sum_{1 \le i \le \frac{n}{2}}a_ia_{n-i}$$
  • 当\(n\)是偶数时,答案为$$a_n-\sum_{1 \le i \le n}a_ia_{n-1}+\frac{1}{2}a_{\frac{n}{2}}(a_{\frac{n}{2}}+1)$$

然后我就用java(因为要高精度)对着公式打,就ac了。

import java.math.*;
import java.util.*;
public class Main
{
static final int maxn = 55;
static BigInteger A[] = new BigInteger[maxn]; static int N;
public static void main(String args[])
{
Scanner cin = new Scanner(System.in);
N = cin.nextInt();
A[1] = BigInteger.valueOf(1);
A[2] = BigInteger.valueOf(1);
A[3] = BigInteger.valueOf(2);
for (int n = 3;n < N;++n)
{
A[n+1] = BigInteger.ZERO;
for (int i = 1;i <= n;++i)
{
BigInteger res; res = BigInteger.ZERO;
for (int j = 1;j <= n/i;++j) res = res.add(A[n+1-i*j]);
A[n+1] = A[n+1].add(res.multiply(A[i]).multiply(BigInteger.valueOf(i)));
}
A[n+1] = A[n+1].divide(BigInteger.valueOf(n));
}
System.out.println(A[N]);
}
}

Ural1387 Vasya's Dad的更多相关文章

  1. Milliard Vasya's Function-Ural1353动态规划

    Time limit: 1.0 second Memory limit: 64 MB Vasya is the beginning mathematician. He decided to make ...

  2. CF460 A. Vasya and Socks

    A. Vasya and Socks time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  3. 递推DP URAL 1353 Milliard Vasya's Function

    题目传送门 /* 题意:1~1e9的数字里,各个位数数字相加和为s的个数 递推DP:dp[i][j] 表示i位数字,当前数字和为j的个数 状态转移方程:dp[i][j] += dp[i-1][j-k] ...

  4. Codeforces Round #281 (Div. 2) D. Vasya and Chess 水

    D. Vasya and Chess time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  5. Codeforces Round #281 (Div. 2) C. Vasya and Basketball 二分

    C. Vasya and Basketball time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. codeforces 676C C. Vasya and String(二分)

    题目链接: C. Vasya and String time limit per test 1 second memory limit per test 256 megabytes input sta ...

  7. Where is Vasya?

    Where is Vasya? Vasya stands in line with number of people p (including Vasya), but he doesn't know ...

  8. Codeforces Round #324 (Div. 2) C. Marina and Vasya 贪心

    C. Marina and Vasya Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/pr ...

  9. Codeforces Round #322 (Div. 2) A. Vasya the Hipster 水题

    A. Vasya the Hipster Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/581/p ...

随机推荐

  1. svn has stoped working

    各种问各种搜  ,看来还得靠自己,,,,下面是解决方案; 如果你出现这种情况,  右键点击svn的选项,就弹出这个框框,,,,点击svn里的哪个选项都是弹出这个框框,,,,重新安装,重启,换各种版本安 ...

  2. 【linux操作命令】mysql

    1.linux下启动mysql的命令: mysqladmin start /ect/init.d/mysql start (前面为mysql的安装路径) 2.linux下重启mysql的命令: mys ...

  3. Smarty中一些标签的使用

    Smarty中的标签和php中的标签不一样 foreach标签{foreach   from=$goods(变量名) key='键,不带$' item='值,不带$'}中间的显示内容{/foreach ...

  4. mvc模式实现

    listdemo.html负责显示,listModel.class.php负责从数据库存储数据和查找数据,mysql.class.php是操作数据库的类,但不直接使用,model类调用mysql,li ...

  5. 2015年校园招聘12家IT公司面试体验

    背景 2015年注定是一个不平凡的年头,作为一个应届毕业生,我也算是经历了工作上的大起大落.下面我先简单讲述一下自己的遭遇,然后根据自己亲身的面试经历,从一个学生的角度去谈谈自己对面试过的公司的一些看 ...

  6. Extjs4使用iframe注意事项

    "video" : { render : function(panel, eOpts) { // 因为iframe在video // panel渲染的时候就已经完全移动到video ...

  7. ### CUDA

    CUDA Learning. #@author: gr #@date: 2014-04-06 #@email: forgerui@gmail.com 1. Introduction CPU和GPU的区 ...

  8. cocos2d-x实战 C++卷 学习笔记--第4章 字符串 __String类

    前言: <cocos2d-x实战C++卷>学习笔记.(cocos2d-x 是3.0版本) 介绍 cocos2d-x 通用的字符串类  __String . 使用cocos2d::__Str ...

  9. ios错误修改了系统头文件

    一.打开终端 二.进入Xcode  输入命令: cd /Users/apple/Library/Developer/Xcode/ 三.打开当前 输入命令: open  . 四.将DerivedData ...

  10. CSS3的几个标签速记3

    transition:CSS3过渡     css3里很好的一个标签,可以非常方便的完成需要很多JS才能完成的动态效果 例语法:transition:width 2S,height 2S,transf ...