Ural1387 Vasya's Dad
Description
Vasya’s dad is good in maths. Lately his favorite objects have been "beautiful" directed graphs. Dad calls a graph "beautiful" if all the following conditions are true:
- The graph contains exactly \(N\) vertices and \(N−1\) edges.
- Exactly one vertex has no entering edges.
- The graph contains no directed cycles.
Dad calls two "beautiful" graphs isomorphic, if the vertices of the first graph can be renumbered in such way that it turns into the second one.
Dad picks an integer \(N\), stocks up blank paper, and draws a "beautiful" graph on each sheet. He verifies that no two drawn graphs are isomorphic.
Given the number \(N\), you are to find the number of sheets that Vasya's dad has to stock up.
Input
Input contains the single integer \(N (1 \le N \le 50)\).
Output
Output the number of "beautiful" graphs with \(N\) vertices.
Sample Input
3
Sample Output
9
题目大意——求\(N\)个点有标号的有根树的数目是多少。
假设\(a_n\)是\(n\)个点的无标号有根树的数目,则有以下的公式:
\]
其中\(c_k\)表示根节点的子树中大小为\(i\)的子树有多少个。
为什么是\(\binom{a_k+c_k-1}{c_k}\),这是个可重组合公式。我们可以这样考虑,我们现在有\(a_k\)中子树可以选,我们可以从中选出\(c_k\)个。那么我们相当于$$\sum_{i = 1}^{a_k}x_i = c_k$$的非负整数解的方案数。也就等价于
$$\binom{a_k+c_k-1}{a_k-1} = \binom{a_k+c_k-1}{c_k}\]
再用下乘法原理,上述公式就得证了。但是复杂度太高,虽然打表依旧可过。然后我们可以利用生成函数优化公式(母函数),然而这一块我们看懂。wtz说了用了很高深的解析组合的公式。希望以后学了后我能够看懂,先记在这里。
设$$A(x) = \sum_{n = 0}{\infty}a_nxn$$
基于上述分析可以迅速(tm那里迅速了)得到
\]
于是就可推导出:
\]
wtz还告诉了我假如树无根,那么也有公式:
- 当\(n\)是奇数时,答案为$$a_n-\sum_{1 \le i \le \frac{n}{2}}a_ia_{n-i}$$
- 当\(n\)是偶数时,答案为$$a_n-\sum_{1 \le i \le n}a_ia_{n-1}+\frac{1}{2}a_{\frac{n}{2}}(a_{\frac{n}{2}}+1)$$
然后我就用java(因为要高精度)对着公式打,就ac了。
import java.math.*;
import java.util.*;
public class Main
{
static final int maxn = 55;
static BigInteger A[] = new BigInteger[maxn]; static int N;
public static void main(String args[])
{
Scanner cin = new Scanner(System.in);
N = cin.nextInt();
A[1] = BigInteger.valueOf(1);
A[2] = BigInteger.valueOf(1);
A[3] = BigInteger.valueOf(2);
for (int n = 3;n < N;++n)
{
A[n+1] = BigInteger.ZERO;
for (int i = 1;i <= n;++i)
{
BigInteger res; res = BigInteger.ZERO;
for (int j = 1;j <= n/i;++j) res = res.add(A[n+1-i*j]);
A[n+1] = A[n+1].add(res.multiply(A[i]).multiply(BigInteger.valueOf(i)));
}
A[n+1] = A[n+1].divide(BigInteger.valueOf(n));
}
System.out.println(A[N]);
}
}
Ural1387 Vasya's Dad的更多相关文章
- Milliard Vasya's Function-Ural1353动态规划
Time limit: 1.0 second Memory limit: 64 MB Vasya is the beginning mathematician. He decided to make ...
- CF460 A. Vasya and Socks
A. Vasya and Socks time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- 递推DP URAL 1353 Milliard Vasya's Function
题目传送门 /* 题意:1~1e9的数字里,各个位数数字相加和为s的个数 递推DP:dp[i][j] 表示i位数字,当前数字和为j的个数 状态转移方程:dp[i][j] += dp[i-1][j-k] ...
- Codeforces Round #281 (Div. 2) D. Vasya and Chess 水
D. Vasya and Chess time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #281 (Div. 2) C. Vasya and Basketball 二分
C. Vasya and Basketball time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- codeforces 676C C. Vasya and String(二分)
题目链接: C. Vasya and String time limit per test 1 second memory limit per test 256 megabytes input sta ...
- Where is Vasya?
Where is Vasya? Vasya stands in line with number of people p (including Vasya), but he doesn't know ...
- Codeforces Round #324 (Div. 2) C. Marina and Vasya 贪心
C. Marina and Vasya Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/pr ...
- Codeforces Round #322 (Div. 2) A. Vasya the Hipster 水题
A. Vasya the Hipster Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/581/p ...
随机推荐
- javascript优化工具 Doloto
Doloto是“Download Time Optimizer”的简写.官方页面上说它对于大型复杂的AJAX应用尤其的有用,因为这些应用包含了大量的 JavaScript 代码.简单的说,它的工作原理 ...
- javascript 获取下一个节点
下一个节点: nextElementSibling 上一个节点 previousElementSibling <div> <select onchange="alert(t ...
- GitHub这么火,程序员你不学学吗? 超简单入门教程 干货
本GitHub教程旨在能够帮助大家快速入门学习使用GitHub. 本文章由做全栈攻城狮-写代码也要读书,爱全栈,更爱生活.原创.如有转载,请注明出处. GitHub是什么? GitHub首先是个分布式 ...
- JavaScript高级程序设计(第三版)学习笔记6、7章
第6章,面向对象的程序设计 对象: 1.数据属性 configurable,表示能否通过delete删除属性从而重新定义属性,能否修改属性的特性,或能否把属性修改为访问器属性,默认为true en ...
- Activiti源码浅析:Activiti的活动授权机制
1. IdentityLink与TaskEntity An identity link is used to associate a task with a certain identity. For ...
- GetWindowRect() GetClientRect() ScreenToClient() MoveWindow()
CWnd.GetWindowRect 参照坐标系:屏幕坐标系,原点为屏幕左上角(0,0)的位置 功能:取得调用窗口CWnd在屏幕坐标系下的RECT坐标 CWnd.GetClientRect 参照坐标系 ...
- WebClient.UploadValues Post中文乱码的解决方法
//using (System.Net.WebClient wc = new System.Net.WebClient()) //{ // wc.Encoding = Encoding.GetEnco ...
- oracle学习(1)
1.安装完oracle数据库后,远程第一次无法登陆,需要进入sys用户后,更改以此后才有效. 2.TNS去读取配置的时候,如果在环境变量中已经配置了 TNS_ADMIN 后,则直接从此目录下读取. 3 ...
- Hudson的安装配置
Hudson的安装配置 目录 一.正文... 2 1.安装配置jdk. 2 2.安装配置tomcat7. 2 3.安装Hudson. 2 4.启动tomcat. 2 5.初识Hudson. 3 6 ...
- NodeJS连接MongoDB数据库时报错
今天第一次尝试连接MongoDB数据库,具体步骤也很简单. 首先,通过NodeJS运行环境安装MongoDB包,进入要安装的目录,执行语句 npm install mongodb 安装成功后,通过如下 ...