eQTL | Expression quantitative trait loci | 表达数量性状基因座 | QTL | 数量性状位点
到底什么是eQTL?
eQTL和QTL之间有什么联系?为什么说QTL比eQTL难很多?
QTL和GWAS有什么关系?
GTEx数据库里的eQTL数据如何利用?
说eQTL之前必须先解释QTL,QTL,一说到中文名就清楚了,数量性状位点,就是一个性状,比如身高,会由成百上千个基因来决定,目的简单明确,那么我们如何找到这些位点呢?
Quantitative Trait Locus (QTL) Analysis - 来自nature的介绍
实现层面,其实研究的不是基因,而是染色体上的区段,更明确的说就是分子标记,SNP最流行,大学里还学过很多烦人的分子标记。
关联是关键,association,基本假设就是遗传片段会跟表型一起分离。
通常极少数的loci具有很高的effect size。

选择足够纯的亲代(需要有基因型和表型的差异),然后不断杂交,后代的基因型和表型会不断的分离重组。
然后对基因组的每个位点做统计检验,得出likelihood ratio,从而得出初略的位点信息。
再最后用分子生物学的方法来narrow down有效区域。
想彻底理解背后的统计学思路还得好好啃几篇paper。
空说空看是不可能学扎实的,所以废话不多说,开始用R实操吧,在分析中你会理解越来越多的概念。
R/qtl: A QTL mapping environment
先装个包,然后library("qtl")
载入数据:data(hyper)
先看看genotype的数据:
行代表样品,也就是一个小鼠,列代表了marker,右边列出来的是marker在1号染色体上的位置cm。
0、1、2分别代表什么;0代表两个都是reference allele;1代表一个是reference allel、一个是alternative allele;2代表两个都是alternative allele。
这个要注意,由于真核大多都是非单倍体,所以通常都有2个或多个等位基因;但是参考基因组里只有一套等位基因,那个就是reference allel;如果要考虑多个等位基因,或者考虑haplotype则要做phasing。


再看看phenotype的数据:

可以看看油管的视频:Using R/qtl to analyze QTL data
可视化数据:
第一个图黑色代表缺失值,

最终我们会得到什么结果呢?
听过飞哥对eQTL的解释,就是相当于把每个基因的表达数据当做是一个phenotype,然后做关联分析,看哪些snp对基因的表达产生影响。
If a given genotype affects (decreases or increases) gene expression at the same locus of the genotype, it's called cis eQTL, if it affects expression at a different locus, trans eQTL.
An eQTL is a locus that explains a fraction of the genetic variance of a gene expression phenotype.
下图是一个典型的eQTL位点,它是在TSS两侧1M区间内,叫做cis-eQTL,下图可以看出三种基因型下表达有显著差异,表明该位点对基因表达有显著影响。

通常我们的说法是这个gene有哪些eQTL位点,通常只需要100个个体就可以了。trans eQTLs要难找得多,因为算法上需要扫描整个基因组区域。
做遗传都知道,做什么都要先把population考虑进去。17 per cent of genes were differentially expressed between populations。GxE互作也是老生常谈。
population minor allele frequency
为什么eQTL必须分组织来分析,因为gene expression signatures are cell-type specific。
cis eQTLs are cell-type specific,所以以上的话需要修正为“这个gene在这个组织里有哪些eQTL位点”。
这就表明某些snp只会影响某些特定的组织,以及致病。
These observations certify the importance of integrating data from a relevant tissue when trying to interpret GWAS results using gene expression as an intermediate phenotype.
An important caveat is that in several cases the same regulatory region and variant will be linked to one gene in one tissue and another gene in another tissue
Expression quantitative trait loci: present and future
看下GTEx数据怎么利用,GTEx Portal: Introduction to the Gene eQTL Visualizer
Genotype-Tissue Expression - GTEx Portal官网 里面都是cis-eQTL
输入一个基因后,会有一个主表出现,相当于heatmap,行是组织,列是eQTL,里面点的颜色代表NES,The size and color of the bubble represent the p-value and NES (normalized effect size) of the eQTL。
拖动上面的框到中间就会看到TSS和TES,底下的被蓝色框起来的灰色框代表了exon区域。

附图就是每个eQTL之间的LD score,黑色代表这些eQTL间并不是独立的,更趋向于连锁在一起。

点击某个eQTL就能看到具体的表达差异了。

一篇通俗的文章:eQTL
Expression quantitative trait loci (eQTLs) are genomic loci that explain all or a fraction of variation in expression levels of mRNAs.
基因组位点,解释了基因表达的变化。
A quantitative trait locus (QTL) is a section of DNA (the locus) which correlates with variation in a phenotype (the quantitative trait).
身高,连续性状的控制位点。
QTL是数量性状位点,比如身高是一个数量性状,其对应的控制基因的位点就是一个数量性状位点,而eQTL就是控制数量性状表达位点,即能控制数量性状基因(如身高基因)表达水平高低的那些基因的位点。
都是位点,一个是常规数量性状,如身高;另一个就是基因表达性状,如Sox10基因的表达;都是在找一些与其具有强烈相关性的(snp)位点。
QTL定位的核心就是连锁。
eQTL | Expression quantitative trait loci | 表达数量性状基因座 | QTL | 数量性状位点的更多相关文章
- eQTL | Expression quantitative trait loci | 数量性状位点 | 表达数量性状基因座
一篇通俗的文章:eQTL Expression quantitative trait loci (eQTLs) are genomic loci that explain all or a fract ...
- eQTL
首先QTL是数量性状位点,比如身高是一个数量性状,其对应的控制基因的位点就是一个数量性状位点,而eQTL就是控制数量性状表达位点,即能控制数量性状基因(如身高基因)表达水平高低的那些基因的位点. 数量 ...
- variant变异 | Epigenome表观基因组 | Disease-susceptible gene 疾病易感基因
paper:cepip: context-dependent epigenomic weighting for prioritization of regulatory variants and di ...
- Targeted Learning R Packages for Causal Inference and Machine Learning(转)
Targeted learning methods build machine-learning-based estimators of parameters defined as features ...
- MongoDB with D3.js
MongoDB with D3.js I consider interactive data visualization to be the critical tool for exploration ...
- 全基因组选择育种(GS)简介
全基因组选择(Genomic selection, GS)是一种利用覆盖全基因组的高密度标记进行选择育种的新方法,可通过早期选择缩短世代间隔,提高育种值(Genomic Estimated Breed ...
- Isotig & cDNA & gene structure & alternative splicing & gene loci & 表达谱
参考:高通量测序相关名词 Isotig 指在转录组de novo测序时,用454平台测序完成后组装出的结果,一个isotig可视为一个转录本. Isogroup 指转录组de novo测序中,用454 ...
- 用variant的数据来推导基因表达 | Imputation of Expression Using PrediXcan
一个工具的逻辑得足够完善.意义足够重大,才有资格发在NG上. A gene-based association method for mapping traits using reference tr ...
- Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...
随机推荐
- 【scala】scala安装测试
下载安装scala:scala-2.13.1.tgz 解压: [hadoop@hadoop01 ~]$ tar -zxvf scala-2.13.1.tgz 查看目录: [hadoop@hadoop0 ...
- Mongodb之增删改查操作
一.创建一个数据库 在我们使用MongoDB数据库时引进了这样一个知识,“对于mongodb,使用了不存在的对象,就等于在创建这个对象”,所以创建数据库的操作就比较简单 在我们使用mysql数据库时u ...
- unity 之协程返回值
yield return null; // 下一帧再执行后续代码yield return 6;//(任意数字) 下一帧再执行后续代码yield break; //直接结束该协程的后续操作yield r ...
- 看看赤裸的envoy是什么样子的?
入门istio,envoy现在看来必不可少,花点时间了解一下吧. Envoy 是什么 我们援引一段官网的描述: Envoy is an L7 proxy and communication bus d ...
- DevExpress中实现GridControl的分页功能
DevExpress中如何实现GridControl的分页功能 简介:DevExpress中如何实现GridControl的分页功能, 主要是利用DataNavigator和GridControl组合 ...
- 数据分析常用shell命令
目录 0.vim编辑器 1.awk命令(重要) 1.1 基本语法 1.2 基本用法 1.3 运算符 1.4 内建变量 1.5 其他 1.6 awk是一门变成语言,支持条件判断.数组.循环等功能.所以我 ...
- python根据字典的值进行排序:
有一个列表嵌套字典:[{"a": 5}, {"b": 4}, {"c": 1},{"e": 2}, {"d&q ...
- python - django (logging 日志配置和简单使用)
1. settings 配置 # 配置日志 LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'formatters': { 's ...
- python的优缺点。
Python的定位是“优雅”.“明确”.“简单”,所以Python程序看上去总是简单易懂,初学者学Python,不但入门容易,而且将来深入下去,可以编写那些非常非常复杂的程序. 开发效率非常高,Pyt ...
- 备份docker运行的gitlab
#!/bin/bash data=$(date "+%Y-%m-%d %H:%M:%S") gitBak='/data/gitlab/data/backups' delFile=` ...