luoguU60884 【模板】动态点分治套线段树
题目连接:https://www.luogu.org/problemnew/show/U60884
题意:有N个点,标号为1∼N,用N−1条双向带权通道连接,保证任意两个点能互相到达。
Q次询问,问从编号为x的点到达标号L∼R的点其中一个点的最小距离是多少。
说明 :N,Q<1e5,边权<1e4;
思路:不难想到点分树,保存每个点到其“负责”的点的距离,这样的话可以套线段树,线段树保存其他点到点的距离。
但是,点分树上有个需要解决的问题是:如果x顺着点分树向父亲走,那么在父亲保存的线段树中要除去从儿子上来的那一部分(否则的话,不是简单路径,求出来的可能会错)。 想了一下这里很难实现,因为是取min操作,所以线段树上二分估计也不行。 所以卡住了。
然后求问群友,群友提到了虚树,我觉得此题的数据需要没法实现。 后面猛地想通,我们不需要考虑“回走”这种情况,因为我们求的是最小距离,而非简单路径肯定是没有简单路径优的。 那么就是果然如标题所说,是个板子题了。
代码实现:点分树+线段树+树剖求LCA。
点分树:点分治的过程中新建的树,树根是第一次找到是重心,每一层的重心与上一层的重心连边得到点分树。
点分树里保存的是自己作为重心时,会“负责”的点,即此时还没有vis过的,且与自己连通的点。
所有经过“x”到达的点,保存在了两部分里:一是x在点分树里保存的信息。二是x在点分树的祖先里保存的信息(这一部分保留了x向上传递是信息,所以大部分题要把这里除去,此题由于是取min,可以不考虑)。
求LCA:开始用了ST表,但是感觉空间耗费太大,就改为了树剖,跑起来还挺快。
#include<bits/stdc++.h>
#define rep(i,w,v) for(int i=w;i<=v;i++)
#define FOR() for(int i=Laxt[u];i;i=Next[i])
using namespace std;
#define ll long long
#define RG register
#define maxn 100010
#define maxm 200010
#define inf 1e9
int fa[maxn],n,cnt;
int dep[maxn];bool vis[maxn];
int Laxt[maxn],Next[maxm],To[maxm],Len[maxm];
int siz[maxn],fcy[maxn],hson[maxn],Top[maxn];
void add(int u,int v,int len)
{
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; Len[cnt]=len;
}
void dfs1(int u,int ff)
{
fa[u]=ff; siz[u]=;
dep[u]=dep[ff]+;
FOR(){
int v=To[i];if(v==ff)continue;
fcy[v]=fcy[u]+Len[i];
dfs1(v,u); siz[u]+=siz[v];
if(siz[v]>siz[hson[u]]) hson[u]=v;
}
}
void dfs2(int u,int tp)
{
Top[u]=tp;
if(hson[u])dfs2(hson[u],tp);
FOR()
if(To[i]!=fa[u]&&To[i]!=hson[u])
dfs2(To[i],To[i]);
}
int LCA(int u,int v)
{
while(Top[u]^Top[v]) dep[Top[u]]<dep[Top[v]]?v=fa[Top[v]]:u=fa[Top[u]];
return dep[u]<dep[v]?u:v;
}
int Dis(int u,int v){return fcy[u]+fcy[v]-*fcy[LCA(u,v)];}
int Fa[maxn],Size,root,mx,rt[maxn];
void Getroot(int u,int ff)
{
siz[u]=;int ret=;
FOR(){
int v=To[i];if(v==ff||vis[v])continue;
Getroot(v,u);siz[u]+=siz[v];
ret=max(ret,siz[v]);
}
ret=max(ret,Size-siz[u]);
if(ret<mx) mx=ret,root=u;
}
void DFS(int u,int ff)
{
vis[u]=true;Fa[u]=ff;
FOR(){
int v=To[i];if(vis[v])continue;
mx=Size=siz[v];
Getroot(v,u);
DFS(root,u);
}
}
struct in{ int l,r,mn; }s[maxn<<]; int tot;
void modify(int &Now,int L,int R,int pos,int val)
{
if(!Now){Now=++tot; s[tot].mn=inf;}
s[Now].mn=min(s[Now].mn,val);
if(L==R) return; int Mid=(L+R)>>;
if(pos<=Mid) modify(s[Now].l,L,Mid,pos,val);
else modify(s[Now].r,Mid+,R,pos,val);
}
int query(int Now,int L,int R,int l,int r)
{
if(!Now) return inf;
if(l<=L&&r>=R) return s[Now].mn;
int Mid=(L+R)>>,res=inf;
if(l<=Mid) res=min(res,query(s[Now].l,L,Mid,l,r));
if(r>Mid) res=min(res,query(s[Now].r,Mid+,R,l,r));
return res;
}
void Modify(int x)
{
modify(rt[x],,n,x,);
for(int i=x;Fa[i];i=Fa[i]){
int dis=Dis(x,Fa[i]);
modify(rt[Fa[i]],,n,x,dis);
}
}
int Query(int x,int L,int R)
{
int res=query(rt[x],,n,L,R);
for(int i=x;Fa[i];i=Fa[i])
{
int dis=Dis(x,Fa[i]);
res=min(res,dis+query(rt[Fa[i]],,n,L,R));
}
return res;
}
int main()
{
int Q,u,v,len;
scanf("%d",&n);
rep(i,,n-){
scanf("%d%d%d",&u,&v,&len);
add(u,v,len); add(v,u,len);
}
dfs1(,); dfs2(,);
Size=mx=n;
Getroot(,); DFS(root,);
rep(i,,n) Modify(i);
int ans=,l,r,x;
scanf("%d",&Q);
while(Q--){
scanf("%d%d%d",&l,&r,&x);
printf("%d\n",Query(x,l,r));
}
return ;
}
luoguU60884 【模板】动态点分治套线段树的更多相关文章
- BZOJ4317Atm的树&BZOJ2051A Problem For Fun&BZOJ2117[2010国家集训队]Crash的旅游计划——二分答案+动态点分治(点分树套线段树/点分树+vector)
题目描述 Atm有一段时间在虐qtree的题目,于是,他满脑子都是tree,tree,tree…… 于是,一天晚上他梦到自己被关在了一个有根树中,每条路径都有边权,一个神秘的声音告诉他,每个点到其他的 ...
- [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)
[APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...
- BZOJ.4553.[HEOI2016&TJOI2016]序列(DP 树状数组套线段树/二维线段树(MLE) 动态开点)
题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[ ...
- P3157 [CQOI2011]动态逆序对(树状数组套线段树)
P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...
- [TJOI2017][bzoj4889] 不勤劳的图书管理员 [线段树套线段树]
题面 传送门 思路 考虑两本书的位置交换对答案的贡献: (为了方便描述,用"左边那本"和"右边那本"称呼两本我们要交换的书,"中间那本"是我 ...
- 【BZOJ3295】动态逆序对(线段树,树状数组)
[BZOJ3295]动态逆序对(线段树,树状数组) 题面 Description 对于序列A,它的逆序对数定义为满足iAj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的 ...
- 【BZOJ2001】[HNOI2010]城市建设(CDQ分治,线段树分治)
[BZOJ2001][HNOI2010]城市建设(CDQ分治,线段树分治) 题面 BZOJ 洛谷 题解 好神仙啊这题.原来想做一直不会做(然而YCB神仙早就切了),今天来怒写一发. 很明显这个玩意换种 ...
- BZOJ 1901 Zju2112 Dynamic Rankings 树状数组套线段树
题意概述:带修改求区间第k大. 分析: 我们知道不带修改的时候直接上主席树就可以了对吧?两个版本号里面的节点一起走在线段树上二分,复杂度是O((N+M)logN). 然而这里可以修改,主席树显然是凉了 ...
- bzoj3196 二逼平衡树 树状数组套线段树
题目传送门 思路:树状数组套线段树模板题. 什么是树状数组套线段树,普通的树状数组每个点都是一个权值,而这里的树状数组每个点都是一颗权值线段树,我们用前缀差分的方法求得每个区间的各种信息, 其实关键就 ...
随机推荐
- [EXP]CVE-2019-9621 Zimbra<8.8.11 GetShell Exploit(配合Cscan可批量)
发现时间 2019年03月18日 威胁目标 采用Zimbra邮件系统的企业 主要风险 远程代码执行 攻击入口 localconfig.xml 配置文件 使用漏洞 CVE-2019-9621 受影响应 ...
- Spring Initializr生成的demo测试404错误
体验Spring Initializr生成的spring boot工程,启动成功, 目录结构如下: 添加了一个简单的controller后,启动成功但访问报404错误: 原因: springboot默 ...
- PHP设计模式 - 中介者模式
中介者模式用于开发一个对象,这个对象能够在类似对象相互之间不直接相互的情况下传送或者调解对这些对象的集合的修改. 一般处理具有类似属性,需要保持同步的非耦合对象时,最佳的做法就是中介者模式.PHP中不 ...
- 16 SpringMVC 的请求参数的绑定与常用注解
1.SpringMVC 绑定请求参数 (1)支持的数据类型 基本类型参数: 包括基本类型和 String 类型POJO 类型参数: 包括实体类,以及关联的实体类数组和集合类型参数: 包括 List 结 ...
- Java开发笔记(一百四十七)通过JDBC管理数据库
前面介绍了如何通过JDBC获取数据库连接,可是Connection对象不能直接执行SQL语句,需要引入Statement报告对象才能操作SQL.Statement对象由Connection的creat ...
- IDEA中使用git
这篇文章写的很好,记录参考 [转载] https://blog.csdn.net/autfish/article/details/52513465 https://www.jianshu.com/p/ ...
- (1)ASP.NET Core 应用启动Startup类简介
1.前言 Core与早期版本的 ASP.NET 对比,配置应用程序的方式的 Global.asax.FilterConfig.cs和RouteConfig.cs 都被Program.cs 和 Star ...
- 介绍ArcGIS中各种数据的打开方法——mdb(个人数据库)
3.打开存储在Access GeoDatabase的要素类 使用工作空间打开一个Access库中的一个要素类. private void OpenWorkspaceFromFileAccess(str ...
- C#静态字段的两个用处
静态字段的2个常用方法 (1)记录已实例化的对象的个数 (2)存储必须在所有实例化之间共享的值 (1)记录已实例化的对象的个数 现在某个培训机构啊,要开设一个学理发的班,计划招5人,只要人数够5人就开 ...
- 自学Python编程的第八天----------来自苦逼的转行人
2019-09-18-21:11:24(初学者不会学博客,望大家见谅见谅) 今天学的内容是有关list..dict.set集合的使用方法和注意事项 list和dict在循环中不可删,而且list在迭代 ...