前向传播模型

一般我们使用的公式是:
\[
a=\frac{1}{1+\exp \left(-\left(w^{T} x+b\right)\right)} = \frac{1}{1+\exp \left(-\left[w^{T} \quad b\right] \cdot[x \quad 1]\right)}
\]
对于隐层有多个神经元的情况就是:
\[
\begin{array}{l}{a_{1}=\frac{1}{1+\exp \left(w^{(1) T} x+b_{1}\right)}} \\ {\vdots} \\ {a_{m}=\frac{1}{1+\exp \left(w^{(m) T} x+b_{m}\right)}}\end{array}
\]
记为:\(z=W x+b\)
\[
\left[ \begin{array}{c}{a^{(1)}} \\ {\vdots} \\ {a^{(m)}}\end{array}\right]=\sigma(z)=\sigma(W x+b)
\]

反向传播中的微积分计算

现在假设我们有一个三层神经网络,我们简单的表示成:
\[
C\left(w_{1}, b_{1}, w_{2}, b_{2}, w_{3}, b_{3}\right)
\]
我们需要调整的就是这些变量,我们的目的就是希望这些变量作为参数,损失函数梯度下降的最快,

现在假设我们每层只有一个神经元,我们将神经网络最后一层得神经元用 \(a^{(L)}\)来表示,这一个损失函数我们可以表示成:\(\operatorname{cost} \longrightarrow C_{0}(\ldots)=\left(a^{(L)}-y\right)^{2}\)

我们从倒数第二层 \(a^{(L-1)}\) 到 \(a^{(L)}\) 层的时候,由下面的公示的得到:
\[
\begin{aligned} z^{(L)} &=w^{(L)} a^{(L-1)}+b^{(L)} \\ a^{(L)} &=\sigma\left(z^{(L)}\right) \end{aligned}
\]
这个是前向传播的公式:现在我们想要损失函数下降的越快,那么 \(C\) 对 \(w\) 越敏感,下降得越快。这里我们将上面的求导用链式法则,只是简单的列出来,
\[
\frac{\partial C_{0}}{\partial w^{(L)}}=\frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C 0}{\partial a^{(L)}}
\]
现在我们分别对上面公式后面的三个求导:
\[
\begin{aligned} \frac{\partial C_0}{\partial a^{(L)}} &=2\left(a^{(L)}-y\right) \\ \frac{\partial a^{(L)}}{\partial z^{(L)}} &=\sigma^{\prime}\left(z^{(L)}\right) \\ \frac{\partial z^{(L)}}{\partial w^{(L)}} &=a^{(L-1)} \end{aligned}
\]
然后我们得到下面的公式:
\[
\frac{\partial C_{0}}{\partial w^{(L)}}=\frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C _{0}}{\partial a^{(L)}}=a^{(L-1)} \sigma^{\prime}\left(z^{(L)}\right) 2\left(a^{(L)}-y\right)
\]
对于这个式子,说明了梯度与哪些因素相关:由于上面的式子,我们只考虑了最终输出的一个元素,由于最后的网络输出的是一层,所以最后一层的神经元求得偏置应该是:
\[
\frac{\partial C}{\partial w^{(L)}}=\frac{1}{n} \sum_{k=0}^{n-1} \frac{\partial C_{k}}{\partial w^{(L)}}
\]
上述只是对一个偏置 \(w(L)\) 求梯度,而我们要对所有的偏置求梯度,那就是:
\[
\nabla C=\left[ \begin{array}{c}{\frac{\partial C}{\partial w^{(1)}}} \\ {\frac{\partial C}{\partial b^{(1)}}} \\ {\vdots} \\ {\frac{\partial C}{\partial w^{(L)}}} \\ {\frac{\partial C}{\partial b^{(L)}}}\end{array}\right]
\]

每层有多个神经元时

前面我们假设的是每层只有一个神经元,现在我们假设每层有多个神经元,我们表示神经网络如下:

我们下一层的计算方法本质上是一样的:
\[
z_{j}^{(L)}=w_{j 0}^{(L)} a_{0}^{(L-1)}+w_{j 1}^{(L)} a_{1}^{(L-1)}+w_{j 2}^{(L)} a_{2}^{(L-1)}+b_{j}^{(L)}
\]

\[
a_{j}^{(L)}=\sigma\left(z_{j}^{(L)}\right)
\]

上面的公式如果写成向量的形式,本质上与每层只有一个神经元是一样的。

此时我们的损失函数就是:
\[
C_{0}=\sum_{j=0}^{n_{L}-1}\left(a_{j}^{(L)}-y_{j}\right)^{2}
\]
损失函数对偏置求导:
\[
\frac{\partial C_{0}}{\partial w_{j k}^{(L)}}=\frac{\partial z_{j}^{(L)}}{\partial w_{j k}^{(L)}} \frac{\partial a_{j}^{(L)}}{\partial z_{j}^{(L)}} \frac{\partial C_{0}}{\partial a_{j}^{(L)}}
\]
这个公式和每层只有一个神经元本质是一样的。

这里我们求的是最后一层,而反向传播的本质是要不断的向后,也就是从最后一层到倒数第二层,一直反向。上面我们求的是倒数第二层到最后一层的 \(w_{j k}^{(L)}\) 对最后一层损失函数的影响,那么再往后该怎么计算呢?所以我们要知道倒数第二层的期望值,所以我们用最后一层对倒数第二层求偏导:
\[
\frac{\partial C_{0}}{\partial a_{k}^{(L-1)}}=\sum_{j=0}^{n_{L}-1} \frac{\partial z_{j}^{(L)}}{\partial a_{k}^{(L-1)}} \frac{\partial a_{j}^{(L)}}{\partial z_{j}^{(L)}} \frac{\partial C_{0}}{\partial a_{j}^{(L)}}
\]
这样我们可以得到期望的 \(a ^{(L-1)}\), 也就算到了倒数第二层,然后我们再用这一层继续往后修正神经网络中的参数就可以了。

本质上就是,每一层的损失函数有三个参数:
\[
\begin{aligned} z^{(L)} &=w^{(L)} a^{(L-1)}+b^{(L)} \\ a^{(L)} &=\sigma\left(z^{(L)}\right) \end{aligned}
\]
分别是 \(w^{(L)}\) 和 \(a^{(L-1)}\) 以及$ b^{(L)}$. 所以我们对他们三个求偏导,也就是梯度下降求最优解来优化这三个参数。

反向传播BP算法的更多相关文章

  1. 神经网络——反向传播BP算法公式推导

    在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练.在众多的训练算法中,其中最杰出的代表就是BP算法,它 ...

  2. 神经网络,前向传播FP和反向传播BP

    1 神经网络 神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入.例如,下图就是一个简单的神经网络: 我们使用圆圈来表示神经网络的输入,标上“”的圆 ...

  3. 手写BP(反向传播)算法

    BP算法为深度学习中参数更新的重要角色,一般基于loss对参数的偏导进行更新. 一些根据均方误差,每层默认激活函数sigmoid(不同激活函数,则更新公式不一样) 假设网络如图所示: 则更新公式为: ...

  4. 反向传播BP为什么高效

    之前有一篇文章讲了反向传播的原理: 下面这篇文章讲了反向传播为什么高效: https://blog.csdn.net/lujiandong1/article/details/52716726 主要通过 ...

  5. Backpropagation反向传播算法(BP算法)

    1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inp ...

  6. BP(back propagation)反向传播

    转自:http://www.zhihu.com/question/27239198/answer/89853077 机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定 ...

  7. 前向传播算法(Forward propagation)与反向传播算法(Back propagation)

    虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解.因此特意先对深度学习中的相关基础概念做一下总结.先看看前向传播算法(Forward propagation)与 ...

  8. ML(5)——神经网络2(BP反向传播)

    上一章的神经网络实际上是前馈神经网络(feedforward neural network),也叫多层感知机(multilayer perceptron,MLP).具体来说,每层神经元与下一层神经元全 ...

  9. [NN] 对于BackPropagation(BP, 误差反向传播)的一些理解

    本文大量参照 David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams, Learning representation by bac ...

随机推荐

  1. html解决空格显示问题

    在前端里面,大家都知道,html中输入空格或换行是识别不了是空格的,但是有时候需要实现,那么该如何解决呢?主要有以下几个方面: 1:常用的转义:  2:使用全角拼音,然后输入空格也可实现 3:用标签 ...

  2. C++ Primer Plus(第6版)习题(第二章)

    1..编写一个C++程序,它显示您的姓名和地址. #include<iostream> using namespace std; int main() { string name,addr ...

  3. Java 初始化块

    初始化块是和成员变量.成员函数一个级别的.一般用于类的初始化,也可执行其他java代码,作用和构造函数相同. 创建对象时,初始化块在构造函数之前执行. 初始化块分为普通初始化块.静态初始化块. 普通初 ...

  4. 3.live555源码分析----延时队列

    live555本身是一个单进程.单线程的服务器,但是它能够完美的让多个客户端同时连接,除了使用select并发编程以外,延时队列是很重要的手段. 当连接一个客户端,进行视频帧传输的时候,是不能持续进行 ...

  5. github-git clone 下载很慢的问题解决

    git clone下载很慢的问题: 下载到指定目录:git clone https://github.com/ChengWuOne/spring-cloud-demo.git D:/日常软件/GitH ...

  6. [LeetCode] 538. 把二叉搜索树转换为累加树 ☆(中序遍历变形)

    把二叉搜索树转换为累加树 描述 给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和. ...

  7. 【OEM】OEM安装维护

    [OEM]OEM安装维护 一.1  BLOG文档结构图       一.2  前言部分   一.2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道 ...

  8. Flask入门到放弃(四)—— 数据库

    转载请在文章开头附上原文链接地址:https://www.cnblogs.com/Sunzz/p/10979970.html 数据库操作 ORM ORM 全拼Object-Relation Mappi ...

  9. CentOS7安装MySQL5.7及Tomcat8.5

    在CentOS7服务器上部署FR项目应用 一.安装CentOS-7_x86_64 1.CentOS7:带GUI的服务器(FTP服务器.JAVA平台.兼容性程序库.开发工具.安全性工具.系统管理工具): ...

  10. Chrome浏览器内部协议Chrome://收集

    Chromium 采用 Chrome:// 协议开头的形式, 规定了一系列的内部协议, 有的用来显示数据, 有的用来实现一些功能, 但对普通用户进行了屏蔽.在Chrome浏览器地址栏直接访问就好了! ...