Flink+Kafka整合的实例
Flink+Kafka整合实例
1.使用工具Intellig IDEA新建一个maven项目,为项目命名为kafka01。
2.我的pom.xml文件配置如下。
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>com.hrb.lhr</groupId>
<artifactId>kafka01</artifactId>
<version>1.0-SNAPSHOT</version> <properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<flink.version>1.1.4</flink.version>
<slf4j.version>1.7.7</slf4j.version>
<log4j.version>1.2.17</log4j.version>
</properties> <dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- explicitly add a standard loggin framework, as Flink does not (in the future) have
a hard dependency on one specific framework by default -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>${slf4j.version}</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>${log4j.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.9_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies> </project>
3.在项目的目录/src/main/java在创建两个Java类,分别命名为KafkaDemo和CustomWatermarkEmitter,代码如下所示。
import java.util.Properties;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema; public class KafkaDeme { public static void main(String[] args) throws Exception { // set up the streaming execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//默认情况下,检查点被禁用。要启用检查点,请在StreamExecutionEnvironment上调用enableCheckpointing(n)方法,
// 其中n是以毫秒为单位的检查点间隔。每隔5000 ms进行启动一个检查点,则下一个检查点将在上一个检查点完成后5秒钟内启动
env.enableCheckpointing(5000);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "10.192.12.106:9092");//kafka的节点的IP或者hostName,多个使用逗号分隔
properties.setProperty("zookeeper.connect", "10.192.12.106:2181");//zookeeper的节点的IP或者hostName,多个使用逗号进行分隔
properties.setProperty("group.id", "test-consumer-group");//flink consumer flink的消费者的group.id
FlinkKafkaConsumer09<String> myConsumer = new FlinkKafkaConsumer09<String>("test0", new SimpleStringSchema(),
properties);//test0是kafka中开启的topic
myConsumer.assignTimestampsAndWatermarks(new CustomWatermarkEmitter());
DataStream<String> keyedStream = env.addSource(myConsumer);//将kafka生产者发来的数据进行处理,本例子我进任何处理
keyedStream.print();//直接将从生产者接收到的数据在控制台上进行打印
// execute program
env.execute("Flink Streaming Java API Skeleton"); }
import org.apache.flink.streaming.api.functions.AssignerWithPunctuatedWatermarks;
import org.apache.flink.streaming.api.watermark.Watermark; public class CustomWatermarkEmitter implements AssignerWithPunctuatedWatermarks<String> { private static final long serialVersionUID = 1L; public long extractTimestamp(String arg0, long arg1) {
if (null != arg0 && arg0.contains(",")) {
String parts[] = arg0.split(",");
return Long.parseLong(parts[0]);
}
return 0;
} public Watermark checkAndGetNextWatermark(String arg0, long arg1) {
if (null != arg0 && arg0.contains(",")) {
String parts[] = arg0.split(",");
return new Watermark(Long.parseLong(parts[0]));
}
return null;
}
}
4.开启一台配置好zookeeper和kafka的Ubuntu虚拟机,输入以下命令分别开启zookeeper、kafka、topic、producer。(zookeeper和kafka的配置可参考https://www.cnblogs.com/ALittleMoreLove/p/9396745.html)
bin/zkServer.sh start
bin/kafka-server-start.sh config/server.properties
bin/kafka-topics.sh --create --zookeeper 10.192.12.106: --replication-factor --partitions --topic test0
bin/kafka-console-producer.sh --broker-list 10.192.12.106: --topic test0
5.检测Flink程序是否可以接收到来自Kafka生产者发来的数据,运行Java类KafkaDemo,在开启kafka生产者的终端下随便输入一段话,在IDEA控制台可以收到该信息,如下为kafka生产者终端和控制台。
OK,成功的接收到了来自Kafka生产者的消息^.^。
Flink+Kafka整合的实例的更多相关文章
- 【译】Flink + Kafka 0.11端到端精确一次处理语义的实现
本文是翻译作品,作者是Piotr Nowojski和Michael Winters.前者是该方案的实现者. 原文地址是https://data-artisans.com/blog/end-to-end ...
- Kafka设计解析(二十二)Flink + Kafka 0.11端到端精确一次处理语义的实现
转载自 huxihx,原文链接 [译]Flink + Kafka 0.11端到端精确一次处理语义的实现 本文是翻译作品,作者是Piotr Nowojski和Michael Winters.前者是该方案 ...
- Kafka设计解析(二十)Apache Flink Kafka consumer
转载自 huxihx,原文链接 Apache Flink Kafka consumer Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flin ...
- 【译】Apache Flink Kafka consumer
Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义. ...
- SpringBoot Kafka 整合集成 示例教程
1.使用IDEA新建工程,创建工程 springboot-kafka-producer 工程pom.xml文件添加如下依赖: <!-- 添加 kafka 依赖 --> <depend ...
- flume与kafka整合
flume与kafka整合 前提: flume安装和测试通过,可参考:http://www.cnblogs.com/rwxwsblog/p/5800300.html kafka安装和测试通过,可参考: ...
- 5 kafka整合storm
本博文的主要内容有 .kafka整合storm .storm-kafka工程 .storm + kafka的具体应用场景有哪些? 要想kafka整合storm,则必须要把这个storm-kafk ...
- 【原创】Kafka Consumer多线程实例续篇
在上一篇<Kafka Consumer多线程实例>中我们讨论了KafkaConsumer多线程的两种写法:多KafkaConsumer多线程以及单KafkaConsumer多线程.在第二种 ...
- 【转】Spark Streaming和Kafka整合开发指南
基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark ...
随机推荐
- HTML 水平线hr
HTML 水平线 <hr /> 标签在 HTML 页面中创建水平线. hr 元素可用于分隔内容. 实例 <p>This is a paragraph</p> < ...
- GIT团队合作探讨之四--不同工作流优缺辨析
由于git非常强大,它可以支持非常多的协作模式,而可能正因为选择太多反而有时候对于我们如何开始开展团队协作无从下手.本文试图阐述企业团队中应用最为广泛的git 工作流,为大家理清思路,最大限度发挥gi ...
- Hadoop学习---Hadoop的深入学习
Hadoop生态圈 存储数据HDFS(Hadoop Distributed File System),运行在通用硬件上的分布式文件系统.具有高度容错性.高吞吐量的的特点. 处理数据MapReduce, ...
- php curl 总结
1 curl post curl -X POST http://localhost/ -d '{"data":{"name":"hheh" ...
- ppt中调整图片位置
按方向键时,如果调整的位置过大,可以使用 Ctrl + 方向键.
- [原]Ubuntu 下安装Mongodb
Mongodb是一款开源的数据库,这里不用我多说了,下面说一下Ubuntu下安装Mongodb可能遇到的问题和解决方案. 故事背景: 今天M$促销,1¥Windows Azure 4000¥-30天的 ...
- Python函数(入门6)
转载请标明出处: http://www.cnblogs.com/why168888/p/6407970.html 本文出自:[Edwin博客园] Python函数 1. Python之调用函数 pri ...
- Django 模型中字段类型的ImageField
model_pic = models.ImageField(upload_to = 'pic_folder/', default = 'pic_folder/None/no-img.jpg') 参数u ...
- gluoncv 目标检测,训练自己的数据集
https://gluon-cv.mxnet.io/build/examples_datasets/detection_custom.html 官方提供两种方案,一种是lst文件,一种是xml文件(v ...
- 如何创建.gitignore文件
为什么要创建.gitignore文件? 因为.gitignore可以排除提交时携带的不必要文件,比如Java中的.class文件.同时还可以排除其他不想提交或者提交没这个必要的文件等等. 创建步骤如下 ...