#-----------------------------------------#
# R in Action (2nd ed): Chapter 15 #
# Time series #
# requires forecast, tseries packages #
# install.packages("forecast", "tseries") #
#-----------------------------------------# par(ask=TRUE) # Listing 15.1 - Creating a time series object in R
sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20,
22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35)
tsales <- ts(sales, start=c(2003, 1), frequency=12)
tsales
plot(tsales) start(tsales)
end(tsales)
frequency(tsales) tsales.subset <- window(tsales, start=c(2003, 5), end=c(2004, 6))
tsales.subset # Listing 15.2 - Simple moving averages
library(forecast)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
ylim <- c(min(Nile), max(Nile))
plot(Nile, main="Raw time series")
plot(ma(Nile, 3), main="Simple Moving Averages (k=3)", ylim=ylim)
plot(ma(Nile, 7), main="Simple Moving Averages (k=7)", ylim=ylim)
plot(ma(Nile, 15), main="Simple Moving Averages (k=15)", ylim=ylim)
par(opar) # Listing 15.3 - Seasonal decomposition using slt()
plot(AirPassengers)
lAirPassengers <- log(AirPassengers)
plot(lAirPassengers, ylab="log(AirPassengers)")
fit <- stl(lAirPassengers, s.window="period")
plot(fit)
fit$time.series
exp(fit$time.series) par(mfrow=c(2,1))
library(forecast)
monthplot(AirPassengers, xlab="", ylab="")
seasonplot(AirPassengers, year.labels="TRUE", main="")
par(opar) # Listing 15.4 - Simple exponential smoothing
library(forecast)
fit <- HoltWinters(nhtemp, beta=FALSE, gamma=FALSE)
fit forecast(fit, 1) plot(forecast(fit, 1), xlab="Year",
ylab=expression(paste("Temperature (", degree*F,")",)),
main="New Haven Annual Mean Temperature") accuracy(fit) # Listing 15.5 - Exponential smoothing with level, slope, and seasonal components
fit <- HoltWinters(log(AirPassengers))
fit accuracy(fit) pred <- forecast(fit, 5)
pred
plot(pred, main="Forecast for Air Travel",
ylab="Log(AirPassengers)", xlab="Time")
pred$mean <- exp(pred$mean)
pred$lower <- exp(pred$lower)
pred$upper <- exp(pred$upper)
p <- cbind(pred$mean, pred$lower, pred$upper)
dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
p # Listing 15.6 - Automatic exponential forecasting with ets()
library(forecast)
fit <- ets(JohnsonJohnson)
fit
plot(forecast(fit), main="Johnson and Johnson Forecasts",
ylab="Quarterly Earnings (Dollars)", xlab="Time") # Listing 15.7 - Transforming the time series and assessing stationarity
library(forecast)
library(tseries)
plot(Nile)
ndiffs(Nile)
dNile <- diff(Nile)
plot(dNile)
adf.test(dNile) # Listing 15.8 - Fit an ARIMA model
fit <- arima(Nile, order=c(0,1,1))
fit
accuracy(fit) # Listing 15.9 - Evaluating the model fit
qqnorm(fit$residuals)
qqline(fit$residuals)
Box.test(fit$residuals, type="Ljung-Box") # Listing 15.10 - Forecasting with an ARIMA model
forecast(fit, 3)
plot(forecast(fit, 3), xlab="Year", ylab="Annual Flow") # Listing 15.11 - Automated ARIMA forecasting
library(forecast)
fit <- auto.arima(sunspots)
fit
forecast(fit, 3)
accuracy(fit)

吴裕雄--天生自然 R语言开发学习:时间序列的更多相关文章

  1. 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置

    下载R语言和开发工具RStudio安装包 先安装R

  2. 吴裕雄--天生自然 R语言开发学习:数据集和数据结构

    数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...

  3. 吴裕雄--天生自然 R语言开发学习:导入数据

    2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...

  4. 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据

    R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...

  5. 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用

    假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...

  6. 吴裕雄--天生自然 R语言开发学习:基础知识

    1.基础数据结构 1.1 向量 # 创建向量a a <- c(1,2,3) print(a) 1.2 矩阵 #创建矩阵 mymat <- matrix(c(1:10), nrow=2, n ...

  7. 吴裕雄--天生自然 R语言开发学习:图形初阶(续二)

    # ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...

  8. 吴裕雄--天生自然 R语言开发学习:图形初阶(续一)

    # ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...

  9. 吴裕雄--天生自然 R语言开发学习:图形初阶

    # ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...

  10. 吴裕雄--天生自然 R语言开发学习:基本图形(续二)

    #---------------------------------------------------------------# # R in Action (2nd ed): Chapter 6 ...

随机推荐

  1. Java线程——线程之间的几点重要说明

    在Java中,可以通过配合调用Object对象的wait()方法和notify()方法或notifyAll()方法来实现线程间的通信.在线程中调用wait()方法,将阻塞等待其他线程的通知(其他线程调 ...

  2. 寒假day03-python

    今天完成了毕设登录注册.填报等功能的界面优化,同时总结了python网络课程的部分知识点 1.修改jupyter notebook默认路径:进入cmd:(1)cd /d F:\(2)jupyter n ...

  3. pycharm运行过程中,出现python已停止工作的对话框的解决办法

    在Windows7的情况下,在运行中输入“Regedit”并执行,使用注册表编辑器. 依次定位到HKEY_CURRENT_USER\Software\Microsoft\Windows\Windows ...

  4. java客房管理小项目,适合java小白练手的项目!

    java客房管理小项目 这个客房管理小项目,适合java初学者练手.功能虽然不多,但是内容很齐全! 喜欢这样文章的可以关注我,我会持续更新,你们的关注是我更新的动力!需要更多java学习资料的也可以私 ...

  5. 求素数的一个快速算法 Python 快速输出素数算法

    思想 以100以内为例. 生成一个全是True的101大小的数组 2开始,遇到2的倍数(4,6,8,10...)都赋值为False 因为这些数字都有因子 2 3开始,遇到3的倍数(6,9,12...) ...

  6. thrift生成c++服务端和客户端

    https://blog.csdn.net/jdx0909/article/details/84727523 https://blog.csdn.net/luoyexuge/article/detai ...

  7. windows通过Winscp传输文件给Vbox虚拟机

    1.VirtualBox->设置->网络->高级->端口转发->Rule 1 TCP 127.0.0.1 22 10.0.2.15(在CentOS中通过ip addr命令 ...

  8. 唐顿庄园S01E01观看感悟

    刚刚看了唐顿庄园的第一季第一集.看第一遍的时候,主要是看剧情,看看有没有什么吸引人的.我是一带而过的.等到看第二遍的时候,仔细观察画面,欣赏画面的美感,琢磨人物的台词对话.不断的倒退回放,越看越有滋味 ...

  9. tesseract系列(4) -- tesseract训练问题总结

    1. 每次训练模型删除目录下,上述重复的名字 2. 生成inttemp.pffmtable文件的时候,如果下述命令(1)不行的话,或者报错,使用命令(2) (1)mftraining -F font_ ...

  10. Django+ajax 返回json数据挨个显示在页面及页面和后台相互传值

    通过Ajax传到后台一个值,根据该值返回数据库表中的某一列的值,然后逐个显示到页面,并且给每个加上超链接,可以进行点击查看详细信息 1.通过Ajax传到后台一个值,红色部分为往Django后台传值,蓝 ...