吴裕雄--天生自然 R语言开发学习:时间序列

























#-----------------------------------------#
# R in Action (2nd ed): Chapter 15 #
# Time series #
# requires forecast, tseries packages #
# install.packages("forecast", "tseries") #
#-----------------------------------------# par(ask=TRUE) # Listing 15.1 - Creating a time series object in R
sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20,
22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35)
tsales <- ts(sales, start=c(2003, 1), frequency=12)
tsales
plot(tsales) start(tsales)
end(tsales)
frequency(tsales) tsales.subset <- window(tsales, start=c(2003, 5), end=c(2004, 6))
tsales.subset # Listing 15.2 - Simple moving averages
library(forecast)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
ylim <- c(min(Nile), max(Nile))
plot(Nile, main="Raw time series")
plot(ma(Nile, 3), main="Simple Moving Averages (k=3)", ylim=ylim)
plot(ma(Nile, 7), main="Simple Moving Averages (k=7)", ylim=ylim)
plot(ma(Nile, 15), main="Simple Moving Averages (k=15)", ylim=ylim)
par(opar) # Listing 15.3 - Seasonal decomposition using slt()
plot(AirPassengers)
lAirPassengers <- log(AirPassengers)
plot(lAirPassengers, ylab="log(AirPassengers)")
fit <- stl(lAirPassengers, s.window="period")
plot(fit)
fit$time.series
exp(fit$time.series) par(mfrow=c(2,1))
library(forecast)
monthplot(AirPassengers, xlab="", ylab="")
seasonplot(AirPassengers, year.labels="TRUE", main="")
par(opar) # Listing 15.4 - Simple exponential smoothing
library(forecast)
fit <- HoltWinters(nhtemp, beta=FALSE, gamma=FALSE)
fit forecast(fit, 1) plot(forecast(fit, 1), xlab="Year",
ylab=expression(paste("Temperature (", degree*F,")",)),
main="New Haven Annual Mean Temperature") accuracy(fit) # Listing 15.5 - Exponential smoothing with level, slope, and seasonal components
fit <- HoltWinters(log(AirPassengers))
fit accuracy(fit) pred <- forecast(fit, 5)
pred
plot(pred, main="Forecast for Air Travel",
ylab="Log(AirPassengers)", xlab="Time")
pred$mean <- exp(pred$mean)
pred$lower <- exp(pred$lower)
pred$upper <- exp(pred$upper)
p <- cbind(pred$mean, pred$lower, pred$upper)
dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
p # Listing 15.6 - Automatic exponential forecasting with ets()
library(forecast)
fit <- ets(JohnsonJohnson)
fit
plot(forecast(fit), main="Johnson and Johnson Forecasts",
ylab="Quarterly Earnings (Dollars)", xlab="Time") # Listing 15.7 - Transforming the time series and assessing stationarity
library(forecast)
library(tseries)
plot(Nile)
ndiffs(Nile)
dNile <- diff(Nile)
plot(dNile)
adf.test(dNile) # Listing 15.8 - Fit an ARIMA model
fit <- arima(Nile, order=c(0,1,1))
fit
accuracy(fit) # Listing 15.9 - Evaluating the model fit
qqnorm(fit$residuals)
qqline(fit$residuals)
Box.test(fit$residuals, type="Ljung-Box") # Listing 15.10 - Forecasting with an ARIMA model
forecast(fit, 3)
plot(forecast(fit, 3), xlab="Year", ylab="Annual Flow") # Listing 15.11 - Automated ARIMA forecasting
library(forecast)
fit <- auto.arima(sunspots)
fit
forecast(fit, 3)
accuracy(fit)
吴裕雄--天生自然 R语言开发学习:时间序列的更多相关文章
- 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置
下载R语言和开发工具RStudio安装包 先安装R
- 吴裕雄--天生自然 R语言开发学习:数据集和数据结构
数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...
- 吴裕雄--天生自然 R语言开发学习:导入数据
2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...
- 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据
R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...
- 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用
假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...
- 吴裕雄--天生自然 R语言开发学习:基础知识
1.基础数据结构 1.1 向量 # 创建向量a a <- c(1,2,3) print(a) 1.2 矩阵 #创建矩阵 mymat <- matrix(c(1:10), nrow=2, n ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶(续二)
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶(续一)
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:基本图形(续二)
#---------------------------------------------------------------# # R in Action (2nd ed): Chapter 6 ...
随机推荐
- EL表达式和JSTL(三)——EL表达式
在JSP的开发中,为了获取Servlet中存储的数据,通常需要很多的Java代码,这样的做法使的JSP页面非常混乱,为此,JSP2.0中提供了一种EL规范,是一种简单的数据访问语言. 1.初识EL E ...
- react-native屏幕适配
写一个屏幕适配类文件AdapterUtil.js,这样避免每次进行单位换算 "use strict" import {Dimensions, StatusBar, Platform ...
- 2019年java后端年终总结(六年开发经验),送给正在努力的你
长大之后,时间总是过得飞快,转眼之间,今年已经只剩下1天了.小时候总感觉遥不可及.只在科幻小说里面出现的2020年,已经开始进入蓄力期了. 这篇文章主要和大家聊一聊分析2019年java技术的更新给大 ...
- Shell语法 【if while for】
[if语法 测试条件 判断语句] 转自:http://lovelace.blog.51cto.com/1028430/1211353 [while for循环] 转自:https://blog.csd ...
- 关于Vue.js的认识(第一部分)[转载]
一.关于v-bind 1.初识v-bind (1).加冒号的是 vue 的 v-bind 语法糖(指计算机语言中添加的某种语法,这种语法对语言的功能并没有影响,但是更方便程序员使用),绑定vue的一个 ...
- sklearn包
sklearn官方学习资料 https://scikit-learn.org/stable/user_guide.html 1 Supervised learning监督学习 1.1 线性模型 1.2 ...
- Filter过滤器的应用
Filter过滤器作用:在每次请求服务资源时做过滤处理. 原理:Filter接口中有一个doFilter方法,当开发人员编写好Filter类实现doFilter方法,并配置对哪个web资源进行拦截后, ...
- JavaScript下判断元素是否存在
1. 判断表单元素是否存在(一) if("periodPerMonth" in document.theForm) { return true; } else{ return fa ...
- android上线之前代码混淆加密
https://blog.csdn.net/zuiwuyuan/article/details/48552701# https://blog.csdn.net/chaoyu168/article/de ...
- vue项目post、put、delete、get向java后端传数组
通常我们向后端发送数据有两种方式 get.post,后又restful风格出现,又有put.delete等传参方式.但是对于我们来说他们的传参本质还是只有get和post的两种,即 get.delet ...