「JLOI2014」松鼠的新家
「JLOI2014」松鼠的新家
两种做法:
- 树上差分 \(O(n)\)
- 树链剖分 \(O(nlogn)\)
树剖比较好写而且无脑,树上差分复杂度优秀一些但是会有点难调。
这里给出树剖写法:
唯一要讲的就是记得每次都把路径终点的贡献 \(-1\)
参考代码:
/*--------------------------------
Code name: E.cpp
Author: The Ace Bee
This code is made by The Ace Bee
--------------------------------*/
#include <cstdio>
#define rg register
#define file(x) \
freopen(x".in", "r", stdin); \
freopen(x".out", "w", stdout);
const int $ = 500010;
inline void swap(int& a, int& b) { int t = a; a = b; b = t; }
inline int read() {
int s = 0; bool f = false; char c = getchar();
while (c < '0' || c > '9') f |= (c == '-'), c = getchar();
while (c >= '0' && c <= '9') s = (s << 3) + (s << 1) + (c ^ 48), c = getchar();
return f ? -s : s;
}
int n, a[$];
int tot, head[$], nxt[$ << 1], ver[$ << 1];
inline void Add_edge(int u, int v)
{ nxt[++tot] = head[u], head[u] = tot, ver[tot] = v; }
int siz[$], son[$], dep[$];
int top[$], rev[$], seg[$], father[$];
int sum[$ << 2], tag[$ << 2];
inline int lc(int rt) { return rt << 1; }
inline int rc(int rt) { return rt << 1 | 1; }
inline void pushup(int rt) {
sum[rt] = sum[lc(rt)] + sum[rc(rt)];
}
inline void f(int rt, int l, int r, int v) {
tag[rt] += v, sum[rt] += v * (r - l + 1);
}
inline void pushdown(int rt, int l, int r, int mid) {
if (tag[rt]) f(lc(rt), l, mid, tag[rt]), f(rc(rt), mid + 1, r, tag[rt]), tag[rt] = 0;
}
inline void update(int rt, int l, int r, int x, int y, int v) {
if (x <= l && r <= y) return f(rt, l, r, v);
int mid = (l + r) >> 1;
pushdown(rt, l, r, mid);
if (x <= mid) update(lc(rt), l, mid, x, y, v);
if (y > mid) update(rc(rt), mid + 1, r, x, y, v);
pushup(rt);
}
inline int query(int rt, int l, int r, int id) {
if (l == r) return sum[rt];
int mid = (l + r) >> 1, res;
pushdown(rt, l, r, mid);
if (id <= mid) res = query(lc(rt), l, mid, id);
else res = query(rc(rt), mid + 1, r, id);
return res;
}
inline void dfs1(int u, int fa) {
siz[u] = 1, father[u] = fa, dep[u] = dep[fa] + 1;
for (rg int v, i = head[u]; i; i = nxt[i])
if (!dep[v = ver[i]]) {
dfs1(v, u), siz[u] += siz[v];
if (siz[v] > siz[son[u]]) son[u] = v;
}
}
inline void dfs2(int u, int topf) {
top[rev[seg[u] = ++seg[0]] = u] = topf;
if (!son[u]) return; dfs2(son[u], topf);
for (rg int v, i = head[u]; i; i = nxt[i])
if (!top[v = ver[i]]) dfs2(v, v);
}
inline void uptRange(int x, int y, int v) {
int fx = top[x], fy = top[y];
while (fx != fy) {
if (dep[fx] < dep[fy]) swap(x, y), swap(fx, fy);
update(1, 1, n, seg[fx], seg[x], v);
x = father[fx], fx = top[x];
}
if (dep[x] > dep[y]) swap(x, y);
update(1, 1, n, seg[x], seg[y], v);
}
int main() {
// file("E");
n = read();
for (rg int i = 1; i <= n; ++i) a[i] = read();
for (rg int u, v, i = 1; i <= n - 1; ++i)
u = read(), v = read(), Add_edge(u, v), Add_edge(v, u);
dfs1(1, 0), dfs2(1, 1);
for (rg int i = 1; i < n; ++i)
uptRange(a[i], a[i + 1], 1), uptRange(a[i + 1], a[i + 1], -1);
for (rg int i = 1; i <= n; ++i)
printf("%d\n", query(1, 1, n, seg[i]));
return 0;
}
「JLOI2014」松鼠的新家的更多相关文章
- BZOJ 3631 【JLOI2014】 松鼠的新家
Description 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在"树&q ...
- 【BZOJ3631】【JLOI2014】松鼠的新家
原题传送门 题意:给你一棵树,然后有一个遍历顺序,你需要补全这个遍历顺序,然后输出这个遍历顺序中每个点的出现次数. 解题思路:本来想找树剖的题,结果发现了一题可以直接写lca的.... 做法1:非常简 ...
- BZOJ 3631: [JLOI2014]松鼠的新家( 树链剖分 )
裸树链剖分... ------------------------------------------------------------------- #include<bits/stdc++ ...
- 3631: [JLOI2014]松鼠的新家
3631: [JLOI2014]松鼠的新家 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 707 Solved: 342[Submit][Statu ...
- [填坑]树上差分 例题:[JLOI2014]松鼠的新家(LCA)
今天算是把LCA这个坑填上了一点点,又复习(其实是预习)了一下树上差分.其实普通的差分我还是会的,树上的嘛,也是懂原理的就是没怎么打过. 我们先来把树上差分能做到的看一下: 1.找所有路径公共覆盖的边 ...
- P3258 [JLOI2014]松鼠的新家
P3258 [JLOI2014]松鼠的新家倍增lca+树上差分,从叶子节点向根节点求前缀和,dfs求子树和即可,最后,把每次的起点和终点都. #include<iostream> #inc ...
- 洛谷 P3258 [JLOI2014]松鼠的新家 解题报告
P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...
- 【洛谷】【lca+树上差分】P3258 [JLOI2014]松鼠的新家
[题目描述:] 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n(2 ≤ n ≤ 300000)个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真 ...
- [Luogu 3258] JLOI2014 松鼠的新家
[Luogu 3258] JLOI2014 松鼠的新家 LCA + 树上差分. 我呢,因为是树剖求的 LCA,预处理了 DFN(DFS 序),于是简化成了序列差分. qwq不讲了不讲了,贴代码. #i ...
随机推荐
- SCROLLINFO结构详解
在刚开始使用SCROLLINFO结构时感觉很不顺手,尤其其中的成员fMask理解不太深刻,经过查询资料才理解一二. 在使用滚动条功能时,如果要设置它的范围和位置可以用以前的函数,例如:SetScrol ...
- yii2之ActiveRecord 模型
Active Record 模型是一种设计模式,用面向对象的方式抽象地访问数据的模式.在 Yii2 中,每一个 Active Record 模型对象的实例是 yii\db\ActiveRe ...
- 【Webpack】
目录 关于模块化编程 Webpack的工作方式 三个重要的概念 使用Webpack创建一个项目 正式使用Webpack 使用Webpack进行ES6的模块化编程 "本质上,Webpack是一 ...
- mvc 上传文件 HTTP 错误 404.13 - Not Found 请求筛选模块被配置为拒绝超过请求内容长度的请求。 maxRequestLength与 maxReceivedMessageSize 和 maxAllowedContentL区别
具体的错误信息如下: 在线上遇到了文件上传问题,在测试环境试了好久都没有发现问题到底出在哪里,以为是服务器做了各种限制,然后一点思绪都没有.最后,尝试将线上的代码包拷贝一份,在测试环境运行,刚开始的时 ...
- cookie的封装
今天逛论坛,看到一个看起来写得好的函数,特此贴出分享: 原文地址[http://www.html-js.com/article/2638 ] 这个地址[https://github.com/jaywc ...
- hackinglab 种族歧视
首先打开题目 发现是禁止访问的然后打开后台 发现后台也没有什么有用的信息所以用bp抓包 然后修改一下国家语言
- 分布式一致性协议 --- Paxos
问题 Paxos 到底解决什么样的问题,动机是什么 Paxos 流程是怎么样的? Paxos 算法的缺陷是什么 概述 Paxos 是分布式一致性算法,根据少数服从多数的原则多个节点确定某个数值.通过学 ...
- 【C语言】创建一个函数,并调用比较三个数的大小
#include <stdio.h> int max(int x,int y,int z) { if(x>=y) if(x>=z) return x; else return ...
- iOS 开发之 SDWebImage 底层实现原理分析
SDWebImage 是一个比较流行的用于网络图片缓存的第三方类库.这个类库提供了一个支持缓存的图片下载器.为了方便操作者调用,它提供了很多 UI 组件的类别,例如:UIImageView.UIBut ...
- Hadoop之伪分布式安装
一.Hadoop的安装模式有3种 ①单机模式:不能使用HDFS,只能使用MapReduce,所以单击模式主要用于测试MR程序. ②伪分布式模式:用多个线程模拟真实多台服务器,即模拟真实的完全分布式环境 ...