1.近实时摄取

将数据从外部源如事件日志、数据库提取到Hadoop数据湖 中是一个很常见的问题。在大多数Hadoop部署中,一般使用混合提取工具并以零散的方式解决该问题,尽管这些数据对组织是非常有价值的。

对于RDBMS摄取,Hudi通过Upserts提供了更快的负载,而非昂贵且低效的批量负载。例如你可以读取MySQL binlog日志或Sqoop增量导入,并将它们应用在DFS上的Hudi表,这比批量合并作业复杂的手工合并工作流更快/更高效。

对于像Cassandra / Voldemort / HBase这样的NoSQL数据库,即使规模集群不大也可以存储数十亿行数据,此时进行批量加载则完全不可行,需要采用更有效的方法使得摄取速度与较频繁的更新数据量相匹配。

即使对于像Kafka这样的不可变数据源,Hudi也会强制在DFS上保持最小文件大小,从而解决Hadoop领域中的古老问题以便改善NameNode的运行状况。这对于事件流尤为重要,因为事件流(例如单击流)通常较大,如果管理不善,可能会严重损害Hadoop集群性能。

对于所有数据源,Hudi都提供了通过提交将新数据原子化地发布给消费者,从而避免部分提取失败。

2. 近实时分析

通常实时数据集市由专门的分析存储,如DruidMemsql甚至OpenTSDB提供支持。这对于需要亚秒级查询响应(例如系统监视或交互式实时分析)的较小规模(相对于安装Hadoop)数据而言是非常完美的选择。但由于Hadoop上的数据令人难以忍受,因此这些系统通常最终会被较少的交互查询所滥用,从而导致利用率不足和硬件/许可证成本的浪费。

另一方面,Hadoop上的交互式SQL解决方案(如Presto和SparkSQL),能在几秒钟内完成的查询。通过将数据的更新时间缩短至几分钟,Hudi提供了一种高效的替代方案,并且还可以对存储在DFS上多个更大的表进行实时分析。此外,Hudi没有外部依赖项(例如专用于实时分析的专用HBase群集),因此可以在不增加运营成本的情况下,对更实时的数据进行更快的分析。

3. 增量处理管道

Hadoop提供的一项基本功能是构建基于表的派生链,并通过DAG表示整个工作流。工作流通常取决于多个上游工作流输出的新数据,传统上新生成的DFS文件夹/Hive分区表示新数据可用。例如上游工作流U可以每小时创建一个Hive分区,并在每小时的末尾(processing_time)包含该小时(event_time)的数据,从而提供1小时的数据新鲜度。然后下游工作流DU完成后立即开始,并在接下来的一个小时进行处理,从而将延迟增加到2个小时。

上述示例忽略了延迟到达的数据,即processing_timeevent_time分开的情况。不幸的是在后移动和物联网前的时代,数据延迟到达是非常常见的情况。在这种情况下,保证正确性的唯一方法是每小时重复处理最后几个小时的数据,这会严重损害整个生态系统的效率。想象下在数百个工作流中每小时重新处理TB级别的数据。

Hudi可以很好的解决上述问题,其通过记录粒度(而非文件夹或分区)来消费上游Hudi表HU中的新数据,下游的Hudi表HD应用处理逻辑并更新/协调延迟数据,这里HUHD可以以更频繁的时间(例如15分钟)连续进行调度,并在HD上提供30分钟的端到端延迟。

为了实现这一目标,Hudi从流处理框架如Spark Streaming、发布/订阅系统如Kafka或数据库复制技术如Oracle XStream中引入了类似概念。若感兴趣可以在此处找到有关增量处理(与流处理和批处理相比)更多优势的更详细说明。

4. DFS上数据分发

Hadoop的经典应用是处理数据,然后将其分发到在线存储以供应用程序使用。例如使用Spark Pipeline将Hadoop的数据导入到ElasticSearch供Uber应用程序使用。一种典型的架构是在Hadoop和服务存储之间使用队列进行解耦,以防止压垮目标服务存储,一般会选择Kafka作为队列,该架构会导致相同数据冗余存储在DFS(用于对计算结果进行离线分析)和Kafka(用于分发)上。

Hudi可以通过以下方式再次有效地解决此问题:将Spark Pipeline 插入更新输出到Hudi表,然后对表进行增量读取(就像Kafka主题一样)以获取新数据并写入服务存储中,即使用Hudi统一存储。

Apache Hudi典型应用场景知多少?的更多相关文章

  1. Uber基于Apache Hudi构建PB级数据湖实践

    1. 引言 从确保准确预计到达时间到预测最佳交通路线,在Uber平台上提供安全.无缝的运输和交付体验需要可靠.高性能的大规模数据存储和分析.2016年,Uber开发了增量处理框架Apache Hudi ...

  2. 基于Apache Hudi构建数据湖的典型应用场景介绍

    1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能 ...

  3. Apache Hudi使用简介

    Apache Hudi使用简介 目录 Apache Hudi使用简介 数据实时处理和实时的数据 业务场景和技术选型 Apache hudi简介 使用Aapche Hudi整体思路 Hudi表数据结构 ...

  4. 数据湖框架选型很纠结?一文了解Apache Hudi核心优势

    英文原文:https://hudi.apache.org/blog/hudi-indexing-mechanisms/ Apache Hudi使用索引来定位更删操作所在的文件组.对于Copy-On-W ...

  5. 基于Apache Hudi 的CDC数据入湖

    作者:李少锋 文章目录: 一.CDC背景介绍 二.CDC数据入湖 三.Hudi核心设计 四.Hudi未来规划 1. CDC背景介绍 首先我们介绍什么是CDC?CDC的全称是Change data Ca ...

  6. OnZoom 基于Apache Hudi的流批一体架构实践

    1. 背景 OnZoom是Zoom新产品,是基于Zoom Meeting的一个独一无二的在线活动平台和市场.作为Zoom统一通信平台的延伸,OnZoom是一个综合性解决方案,为付费的Zoom用户提供创 ...

  7. KLOOK客路旅行基于Apache Hudi的数据湖实践

    1. 业务背景介绍 客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票.一日游.特色体验.当地交通与美食预订服务.覆盖全球100个国家及地区,支持12种语言和41种货 ...

  8. ZooKeeper学习之路 (七)ZooKeeper设计特点及典型应用场景

    ZooKeeper 特点/设计目的 ZooKeeper 作为一个集群提供数据一致的协调服务,自然,最好的方式就是在整个集群中的 各服务节点进行数据的复制和同步. 数据复制的好处 1.容错:一个节点出错 ...

  9. 搞懂分布式技术6:Zookeeper典型应用场景及实践

    搞懂分布式技术6:Zookeeper典型应用场景及实践 一.ZooKeeper典型应用场景实践 ZooKeeper是一个高可用的分布式数据管理与系统协调框架.基于对Paxos算法的实现,使该框架保证了 ...

随机推荐

  1. 关于go的init函数

    亲测,如果加载一个包,如果一个包里的每个文件,均含有init函数,那么均会执行. 目前来看,init的执行顺序,是文件名称的自然排序进行执行的. 并且只是所加载包里的go文件的init函数执行,对于包 ...

  2. docker中安装宝塔面板教程

    本人电脑是win10,安装的virtualbox,装的centos7.2,在centos7.2装了docker,这个比较简单,网上一大堆教程,今天说一下装好了docker之后怎么在docker中安装面 ...

  3. 2019-2020-1 20199329《Linux内核原理与分析》第九周作业

    <Linux内核原理与分析>第九周作业 一.本周内容概述: 阐释linux操作系统的整体构架 理解linux系统的一般执行过程和进程调度的时机 理解linux系统的中断和进程上下文切换 二 ...

  4. Kubernetes产生背景、核心概念

    Kubernetes是什么 • Kubernetes是Google在2014年开源的一个容器集群管理系统,Kubernetes简称K8S. • Kubernetes用于容器化应用程序的部署,扩展和管理 ...

  5. 算法竞赛进阶指南--hamilton路径

    // hamilton路径 int f[1 << 20][20]; int hamilton(int n, int weight[20][20]) { memset(f, 0x3f, si ...

  6. 10 微信小程序路由跳转

    一.四种跳转方式 API路由详解 除了tabBar这种底部跳转的方法,我们还有路由跳转,以下四种方式: 1. wx.switchTab() :跳转到 tabBar 页面,并关闭其他所有非 tabBar ...

  7. MySQL升级-CentOS6.8

    在腾讯云购买的服务器自带的MySQL是5.1版本的,相对于最新版的5.7差了很多特性,在平时的项目练习中使用到了MySQL也会遇到一些奇葩的错误,很有必要升级到至少5.5版本以上. 步骤: 1.备份数 ...

  8. B. Heaters 思维题 贪心 区间覆盖

    B. Heaters 这个题目虽然只有1500的分数,但是我还是感觉挺思维的,我今天没有写出来,然后看了一下题解 很少做这种区间覆盖的题目,也不是很擅长,接下来讲讲我看完题解后的思路. 题目大意是:给 ...

  9. 循环结构(for、while)

    3.4用for语句实现循环结构 什么是循环结构 for语句 1.什么是循环结构? 循环结构又称为重复结构,是利用计算机运算速度快以及能进行逻辑控制的特点来重复执行某些操作.重复执行的部分称为循环体. ...

  10. 一篇文章解决MongoDB的所有问题

    目录 一.MongoDB相关概念 1.1 业务应用场景 1.1.1 而MongoDB可应对"三高"需求· 1.1.2 什么时候选择MongoDB? 1.1.3 如果用mysql? ...