51Nod 1265 : http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1265

1265 四点共面

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题

给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面)。如果共面,输出"Yes",否则输出"No"。

Input

第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)

第2 - 4T + 1行:每行4行表示一组数据,每行3个数,x, y, z, 表示该点的位置坐标(-1000 <= x, y, z <= 1000)。

Output

输出共T行,如果共面输出"Yes",否则输出"No"。

Input示例

1

1 2 0

2 3 0

4 0 0

0 0 0

Output示例

Yes

题解:

确定空间中的四个点(三维)是否共面

对于四个点, 以一个点为原点,对于其他三个点有A,B, C三个向量, 求出 A X B (cross product), 就是以A B构成的平面的一个法向量(如果 AB共线,则法向量为0), 在求其与C之间的点积, 如果为0, 则表示两个向量为0。 所以四点共面。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <cmath>
using namespace std; struct Node{
double x, y, z;
}; int main(){
// freopen("in.txt", "r", stdin); int test_num;
Node a[5];
double ans;
scanf("%d", &test_num);
while(test_num--){
for(int i=0; i<4; ++i){
scanf("%lf %lf %lf", &a[i].x, &a[i].y, &a[i].z);
}
// the cross product of (a,b)
a[4].x = -(a[1].z - a[0].z)*(a[2].y - a[0].y)+ (a[1].y - a[0].y)*(a[2].z - a[0].z);
a[4].y = (a[1].z - a[0].z)*(a[2].x-a[0].x) - (a[1].x - a[0].x)*(a[2].z - a[0].z);
a[4].z = (a[1].x -a[0].x)*(a[2].y - a[0].y) - (a[1].y-a[0].y)*(a[2].x - a[0].x );
// the dot product of cp(a,b) and c
ans = (a[3].x - a[0].x)*(a[4].x) + (a[3].y-a[0].y)*a[4].y + (a[3].z-a[0].z)*a[4].z;
if( fabs(ans) <= 1e-9){
printf("Yes\n");
}else{
printf("No\n");
}
}
return 0;
}

  

51Nod-1265 四点共面的更多相关文章

  1. 51Nod 1265 四点共面(计算几何)

    1265 四点共面  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面). ...

  2. 51nod 1265 四点共面【计算几何+线性代数】

    1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共 ...

  3. 51nod 1265 四点共面——计算几何

    题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1265 以其中某一点向其它三点连向量,若四点共面,这三个向量定义的平行六面体 ...

  4. 51Nod:1265 四点共面

    计算几何 修改隐藏话题 1265 四点共面  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点 ...

  5. 51nod1265 四点共面

    题目链接:51nod 1265 四点共面 四个点构成的三个向量a,b,c共面的充要条件是存在不全为零的实数x,y,z满足x*a+y*b+z*c=0,然后想到线代了.. 其实就是三个向量的混合积为0:( ...

  6. 51nod1265四点共面

    1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面).如 ...

  7. (四点共面) 51nod1265 四点共面

    1265 四点共面 1 秒 131,072 KB 0 分 基础题   给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面).如果共面,输出"Ye ...

  8. 51nod--1265 四点共面 (计算几何基础, 点积, 叉积)

    题目: 1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4 ...

  9. 51nod1265判断四点共面

    1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共 ...

随机推荐

  1. 自定义控件之圆形的image

    需要添加点击事件的的时候在自定义的控件中覆写OnTouchEvent():方法进行点击事件的分发 package com.example.administrator.mvp.ui.widget; im ...

  2. 【Swift】iOS开发历险记(二)

    前言 这个系列主要是一些开发中遇到的坑记录分享,有助于初学者跨过这些坑,攒够 7 条发一篇. 声明  欢迎转载,但请保留文章原始出处:)  博客园:http://www.cnblogs.com 农民伯 ...

  3. python之很好的网站

    1.python官方开发者文档查询和python下载网站 2.

  4. HDFS --访问

    Hdfs的访问方式有两种,第一:类似linux命令,hadoop shell.第二:java API方式. 先看第一种. FS Shell cat chgrp chmod chown copyFrom ...

  5. 全新的membership框架Asp.net Identity(2)——绕不过的Claims

    本来想直接就开始介绍Identity的部分,奈何自己挖坑太深,高举高打的方法不行.只能自己默默下载了Katana的源代码研究了好一段时间.发现要想能够理解好用好Identity, Claims是一个绕 ...

  6. Linux系统查看系统是32位还是64位方法总结

    这篇博客是总结.归纳查看Linux系统是32位还是64位的一些方法,很多内容来自网上网友的博客.本篇只是整理.梳理这方面的知识,方便自己忘记的时候随时查看. 方法1:getconf LONG_BIT ...

  7. SQL SERVER如何通过SQL语句获服务器硬件和系统信息

    在SQL SERVER中如何通过SQL语句获取服务器硬件和系统信息呢?下面介绍一下如何通过SQL语句获取处理器(CPU).内存(Memory).磁盘(Disk)以及操作系统相关信息.如有不足和遗漏,敬 ...

  8. MS SQL巡检系列——检查数据库上一次DBCC CHECKDB的时间

    DBCC CHECKDB检查指定数据库中的所有对象的逻辑和物理完整性,具体请参考MSDN文档.我们必须定期对数据库做完整性检查(DBCC CHECKDB),以便能及时发现一些数据库损坏(Corrupt ...

  9. MySQL server has gone away报错原因分析/

    在平时和开发的交流 以及 在论坛回答问题的或称中会发现这个问题被问及的频率非常高. 程序中报错: MySQL server has gone away 是什么意思? 如何避免? 因此,感觉有必要总结一 ...

  10. python 利用 setup.py 手动安装django_chartit

    手动安装django_chartit库 1 下载压缩包 2 解压到python安装目录下,文件夹名为django_chartit,并检查文件夹下是否有setup.py文件 3 在cmd中进入djang ...