线段树做法很简单,但分块好啊

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long //#define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin); #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 100007; int block[N], blockSize;
int a[N], ans[N], tag[N];
inline void Change(int l, int r){
int minn = Min(r, block[l] * blockSize);
R(i,l,minn){
ans[block[i]] -= a[i] ^ tag[block[i]];
a[i] ^= 1;
ans[block[i]] += a[i] ^ tag[block[i]];
}
if(block[l] != block[r]){
R(i, (block[r] - 1) * blockSize + 1, r){
ans[block[i]] -= a[i] ^ tag[block[i]];
a[i] ^= 1;
ans[block[i]] += a[i] ^ tag[block[i]];
}
}
R(i,block[l] + 1, block[r] - 1){
ans[i] = blockSize - ans[i]; // md, wo ge sa bi
tag[i] ^= 1;
}
}
inline int Query(int l, int r){
int sum = 0;
int minn = Min(r, block[l] * blockSize);
R(i,l,minn){
sum += a[i] ^ tag[block[i]];
}
if(block[l] != block[r]){
R(i, (block[r] - 1) * blockSize + 1, r){
sum += a[i] ^ tag[block[i]];
}
}
R(i,block[l] + 1, block[r] - 1){
sum += ans[i]; // I'm so sb
}
return sum;
} int main(){
int n, m;
io >> n >> m;
blockSize = sqrt(n);
R(i,1,n){
block[i] = (i - 1) / blockSize + 1;
}
R(i,1,m){
int opt, l, r;
io >> opt >> l >> r;
if(opt == 0){
Change(l, r);
}
else{
printf("%d\n", Query(l, r));
}
} return 0;
}

Luogu3870 [TJOI2009]开关 (分块)的更多相关文章

  1. 题解 P3870 【[TJOI2009]开关】/基础分块学习小结

    直接进入正题: 分块: 分块分块,就是把一个长串东西,分为许多块,这样,我们就可以在操作一个区间的时候,对于在区间里面完整的块,直接操作块,不完整的直接操作即可,因为不完整,再加上一个块本身就不大,复 ...

  2. P3870 [TJOI2009]开关

    思路 重题 代码 #include <iostream> #include <vector> #include <cstdio> #include <cstr ...

  3. 题解 P3870 【[TJOI2009]开关】

    这个题我愣是交了好几遍没有过...... 后来@_皎月半洒花dalao告诉我说要^儿子节点的tag,然后就明白了...... 行吧,先上题面: 题目描述 现有N(2 ≤ N ≤ 100000)盏灯排成 ...

  4. 洛谷P3870 [TJOI2009]开关

    题目描述 现有\(N(2 ≤ N ≤ 100000)\)盏灯排成一排,从左到右依次编号为:\(1,2,......,N\).然后依次执行\(M(1 ≤ M ≤ 100000)\)项操作,操作分为两种: ...

  5. [TJOI2009]开关 (线段树)

    题目描述 现有N(2 ≤ N ≤ 100000)盏灯排成一排,从左到右依次编号为:1,2,......,N.然后依次执行M(1 ≤ M ≤ 100000)项操作,操作分为两种:第一种操作指定一个区间[ ...

  6. 洛谷 3870 [TJOI2009]开关

    [题解] 线段树基础题.对于每个修改操作把相应区间的sum改为区间长度-sum即可. #include<cstdio> #include<algorithm> #include ...

  7. 洛谷 P3870 [TJOI2009]开关

    题意简述 有n盏灯,默认为关,有两个操作: 1.改变l~r的灯的状态(把开着的灯关上,关着的灯打开) 2.查询l~r开着的灯的数量 题解思路 维护一个线段树,支持区间修改,区间查询 懒标记每次^1 代 ...

  8. 洛谷 P3870 [TJOI2009]开关 题解

    原题链接 前置知识: 线段树的单点.区间的修改与查询. 一看,我们需要维护两个操作: 区间取反: 区间求和. (因为区间 \(1\) 的个数,就是区间的和) 典型的 线段树 . 如果你只会线段树的 区 ...

  9. 洛谷P3870 [TJOI2009] 开关 (线段树)

    简单的省选题...... 打异或标记即可. 1 #include<bits/stdc++.h> 2 const int N=2e5+10; 3 using namespace std; 4 ...

随机推荐

  1. 注意:Spring Boot 2.7开始spring.factories不推荐使用了,接下来这么玩...

    如果你是Spring Boot用户的话,一定有这样的开发体验,当我们要引入某个功能的时候,只需要在maven或gradle的配置中直接引入对应的Starter,马上就可以使用了,而不需要像传统Spri ...

  2. Vben Admin 源码学习:状态管理-错误日志

    0x00 前言 本文将对 Vue-Vben-Admin 的状态管理实现源码进行分析解读,耐心读完,相信您一定会有所收获! 0x01 errorLog.ts 错误日志 文件 src\store\modu ...

  3. JavaDoc——JavaSE基础

    JavaDoc 文档注释内容的含义 @author // 作者 @version // 版本 @since // 最早支持的Java版本 @param // 接收的参数 @return // 返回值 ...

  4. Wireshark学习笔记(二)取证分析案例详解

    @ 目录 练习一:分析用户FTP操作 练习二:邮件读取 练习三:有人在摸鱼? 练习一:分析用户FTP操作 已知抓包文件中包含了用户登录FTP服务器并进行交互的一个过程,你能否通过wireshark分析 ...

  5. JAVA 线程的6种状态

    JAVA线程的6种状态 线程状态(Thread.State).线程处于下列状态的其中之一. 一个线程在一个时刻只能有一个状态.这些状态是虚拟机线程状态,不能反应任何操作系统的线程状态. 通过Threa ...

  6. php判断客户端浏览器类型

    /** * 判断浏览器名称和版本 */ function get_user_browser() { if (empty($_SERVER['HTTP_USER_AGENT'])) { return ' ...

  7. Linux常用命令-创建用户修改密码-useradd

    命令简介 useradd/userdel 创建新用户/删除用户,需要管理员权限操作. 在创建用户时,如果不配置密码,用户的默认密码是不可用的,所以,useradd命令一般与passwd命令配合使用,下 ...

  8. 【Pr】基础流程

    新建工程 1.打开Pr 2.点击"新建""项目" 3.在电脑磁盘上新建好项目想要存放的位置,比如Demo1,为了便于管理,我先新建了一个Demo文件夹,再在里边 ...

  9. 【Parcel 2 + Vue 3】从0到1搭建一款极快,零配置的Vue3项目构建工具

    前言 一周时间,没见了,大家有没有想我啊!哈哈!我知道肯定会有的.言归正传,我们切入正题.上一篇文章中我主要介绍了使用Vite2+Vue3+Ts如何更快的入手项目.那么,今天我将会带领大家认识一个新的 ...

  10. Spring Data JPA系列4——Spring声明式数事务处理与多数据源支持

    大家好,又见面了. 到这里呢,已经是本SpringData JPA系列文档的第四篇了,先来回顾下前面三篇: 在第1篇<Spring Data JPA系列1:JDBC.ORM.JPA.Spring ...