2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)
2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)
https://www.luogu.com.cn/problem/P2501
题意:
现在我们有一个长度为 n 的整数序列 a。但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列。但是不希望改变过多的数,也不希望改变的幅度太大。
求最小的改变次数和此时每个数改变的绝对值之和。
分析:
对于 \(a_i\) ,\(a_j\) , \(i<j\) ,当 \(j-i<=a_j-a_i\) 时 \(i\) 与 \(j\) 这两项保留。移项得: \(a_i-i<=a_j-j\) ,则第一问转变为求 \(a_i-i\) 的最长不降子序列。在求出来的最长不降子序列中任意相邻两个元素之间的原序列 \(b_i\) 的元素均不在 \(b_k\) 到 \(b_{k+1}\) 中。任取原序列中的 \(k\) ,使 \(i<=k\) 且 \(k<=j\) ,\(suf\) 为从 \(k+1\) 开始到 \(j\) 之间修改的绝对值之和,这些数均被修改为 \(a_j\) , \(pre\) 为从 \(i\) 开始到 \(k\) 之间修改的绝对值之和,这些数均被修改为 \(a_i\) 。如果存在一个数 \(a_x\) ,且 \(a_x>a_j\) ,则这个数最大可被被修改为 \(a_j\) ,同理,如果存在一个数 \(a_y\) ,且 \(a_y<a_i\) ,那么把 \(a_y\) 修改成 \(a_i\) 更优。但是要保证原序列被修改后依旧是最长不降,所以一定存在某个点使 \(i\) 到 \(j\) 这个区间被分割后形成两层楼梯阶梯,使得修改的绝对值最小。
代码如下:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#define IOS ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
using namespace std;
#define int long long
const int N=4e4+10;
const int inf=0x3f3f3f3f;
int n,a[N],f[N],pre[N],suf[N],fin[N],top,len[N];
int cnt,head[N];
struct node{
int to,next;
}e[N];
inline void add(int u,int v){
++cnt;
e[cnt].to=v;
e[cnt].next=head[u];
head[u]=cnt;
}
signed main(){
IOS;
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i],a[i]-=i;
a[0]=-inf;a[n+1]=inf;
for(int i=1;i<=n+1;i++){
int L=0,R=top;
while(L<R){
int mid=(L+R+1)>>1;
if(fin[mid]<=a[i])L=mid;
else R=mid-1;
}
if(L==top)++top;
len[i]=L+1;
fin[L+1]=a[i];
add(len[i],i);
}
add(0,0);
memset(f,inf,sizeof(f));
f[0]=0;
for(int i=1;i<=n+1;i++){
for(int j=head[len[i]-1];j;j=e[j].next){
int v=e[j].to;
if(v>i||a[v]>a[i])continue;
pre[v]=suf[i-1]=0;
for(int k=v+1;k<i;k++)pre[k]=pre[k-1]+abs(a[k]-a[v]);
for(int k=i-2;k>=v;k--)suf[k]=suf[k+1]+abs(a[k+1]-a[i]);
for(int k=v;k<i;k++)f[i]=min(f[i],f[v]+suf[k]+pre[k]);
}
}
cout<<n-top+1<<endl<<f[n+1];
return 0;
}
2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)的更多相关文章
- P2501 [HAOI2006]数字序列 (LIS,DP)(未完成)
第二问好迷... #include "Head.cpp" #include <vector> const int N = 35007; vector<int> ...
- 洛谷 P2501 [HAOI2006]数字序列 解题报告
P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...
- 2021.12.06 P2511 [HAOI2008]木棍分割(动态规划)
2021.12.06 P2511 [HAOI2008]木棍分割(动态规划) https://www.luogu.com.cn/problem/P2511 题意: 有n根木棍, 第i根木棍的长度为 \( ...
- 【BZOJ 1049】 1049: [HAOI2006]数字序列 (LIS+动态规划)
1049: [HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变 ...
- Luogu P2501 [HAOI2006]数字序列
题目 首先把\(a\)改成严格单调上升等于把\(a_i-i\)改成单调不降. 那么第一问可以直接做LIS,答案就是\(n-\)LIS的长度. 同时我们记录一下序列中每个位置结尾的LIS长度. 第二问我 ...
- p2501 [HAOI2006]数字序列
传送门 分析 https://www.luogu.org/blog/FlierKing/solution-p2501 对于第二问的感性理解就是有上下两条线,一些点在上面的线的上面或者下面的线的下面,然 ...
- 【BZOJ】1049: [HAOI2006]数字序列(lis+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1049 题意:给一个长度为n的整数序列.把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希 ...
- 【BZOJ1049】 [HAOI2006]数字序列
BZOJ1049 [HAOI2006]数字序列 dp好题? 第一问 第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列. \(n-ans\)就是最终的答案. 第二问 好难啊.不会.挖坑 ...
- bzoj 1049 [HAOI2006]数字序列
[bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...
随机推荐
- knife4j只用此插件的最简洁开发方式
一.POM添加 在pom文件里添加包 1 <!--引入knife4j以来--> 2 <dependency> 3 <groupId>com.github.xiaoy ...
- 西门子S210驱动器接线
参考:SINAMICS S210 操作说明 1.系统概述 P28 节2.2 单相版驱动器的系统组件和附件 2.电源接线 P56 节3.2 单相 230 V 版驱动器的连接示例 单相版驱动器在 IT 电 ...
- MM32F0140 UART1 DMA RX and TX 中断接收和发送数据
目录: 1.MM32F0140简介 2.DMA工作原理简介 3.初始化MM32F0140 UART1 4.配置MM32F0140 UART1 DMA接收 5.配置MM32F0140 UART1 DMA ...
- Spring Boot 的核心配置文件有哪几个?它们的区别是什么?
Spring Boot 的核心配置文件是 application 和 bootstrap 配置文件.application 配置文件这个容易理解,主要用于 Spring Boot 项目的自动化配置.b ...
- Eureka和Zookeeper区别?
(1)Eureka取CAP的AP,注重可用性,Zookeeper取CAP的CP注重一致性. (2)Zookeeper在选举期间注册服务瘫痪,虽然服务最终会恢复,但选举期间不可用. (3)eureka的 ...
- SpringBoot单元测试携带Cookie
由于我SpringBoot项目,集成了SpringSecurity,而Security框架使用Redis存储Session,所以,这里列出几个关键的类 org.springframework.sess ...
- Java 中怎么打印数组?
你可以使用 Arrays.toString() 和 Arrays.deepToString() 方法来打印数组.由 于数组没有实现 toString() 方法,所以如果将数组传递给 System.ou ...
- 本地存储和cookies之间的区别是什么?
cookies本地存储客户端/服务器端既可以从客户端也可以从服务器端访问数据.每个请求都会发送cookie数据到服务器.只能在本地浏览器端访问数据.服务器无法访问本地存储,除非特意通过POST或GET ...
- 学习Kvm(一)
背景介绍 传统数据中心面临的问题: 资源使用率低 资源分配不均 自动化能力差 初始化成本高 云计算: 云计算是一种按使用量付费的模式,这种模式提供可用的.便捷的.按需的网络访问, 进入可配置的计 ...
- pygame.error: video system not initialized
在pygame写游戏出现pygame.error: video system not initialized 源代码 import sysimport pygamedef run_game(): py ...