论文笔记 - SIMILAR: Submodular Information Measures Based Active Learning In Realistic Scenarios
motivation
Active Learning 存在的重要问题:现实数据极度不平衡,有许多类别很少见(rare),又有很多类别是冗余的(redundancy),又有些数据是 OOD 的(out-of-distribution)。
1. 不同的次模函数
提出三种次模函数的变体:
- 次模条件增长(Submodular Conditional Gain, SCG),越大说明差异越大:
$$f(\mathcal{A}|\mathcal{P})=f(\mathcal{A}\cup\mathcal{P})-f(\mathcal{P})$$
- 次模交互信息(Submodular Mutual Information, SMI),越大说明相似性越大:
$$I_f(\mathcal{A};\;\mathcal{Q})=f(\mathcal{A})+f(\mathcal{Q})-f(\mathcal{A}\cup\mathcal{Q})$$
- 次模条件交互信息(Submodular Conditional Mutual Information, SCMI),上面二者的结合:
$$I_f(\mathcal{A};\;\mathcal{Q}|\mathcal{P})=f(\mathcal{A}\cup\mathcal{P})+f(\mathcal{Q}\cup\mathcal{P})-f(\mathcal{A}\cup\mathcal{Q}\cup\mathcal{P})-f(\mathcal{P})$$
其中 SCMI 可以通过设置不同的 $\mathcal{Q}$ 和 $\mathcal{P}$ 得到另外两种次模函数(算上标准次模函数的话就是三种),对应关系和适用场景如下:

图 1 各种SIM 函数
2. 次模函数的实例化问题
次模信息度量(submodular information measures, SIM),一般有三种实例化的问题:
- 设施选址问题(Facility Location)
- 图切问题(Graph Cut)
- 对数行列式问题(Log Determinant)
Analysis
1. 标准 Active Learning
见图 1 的第一行,此时问题退化:AL 的检索样本过程只考虑多样性(不考虑检索的数据是否冗余、OOD,也不偏向 rare 的样本)。
2. 样本不平衡
主要指某些类别出现很少的情况,例如医疗影像病灶判断,真正 positive 的数据是很少的,因此可以使用 SMI 次模函数(图 1 第二行),在保证多样性的基础上,使得 AL 检索的样本与 $\mathcal{Q}$(有病灶的影像)尽可能接近。
3. 样本冗余
虽然次模函数本身保证了多样性,但是在 batch active learning 中,多样性的保证指存在与一个 batch 中。因此可以使用 SCG 次模函数(图 1 第三行),提供额外的多样性正则信息。
4. OOD 数据
未标注的数据容易出现 OOD 的数据,例如在手写数字识别的任务中,未标注的数据集中出现了手写字母的图片(不是任务目标也无法提供有效信息),是应当避免的。因此可以使用 SCMI 次模函数(图 1 第四行),使得 AL 检索的样本与 in-domin 的数据尽可能相似,与 out-of-domin 的数据尽可能远离,同时保证多样性。
5. 混合场景
当未标注数据出现了多种情景时也可以进行组合(例如即出现了冗余的数据,也出现了 OOD 的数据):

图 2 混合场景
同时,类似于在线学习(online learning),未标注的数据集有可能是在不断产生中的,因此一开始数据集未出现上述场景的时候可以使用标准次模函数,出现了上述场景之后(例如某次数据收集之后出现了大量 OOD 样本)了可以再改用 SIM 的变体。
论文笔记 - SIMILAR: Submodular Information Measures Based Active Learning In Realistic Scenarios的更多相关文章
- 论文笔记 - PRISM: A Rich Class of Parameterized Submodular Information Measures for Guided Subset Selection
Motivation 与 Active Learning 类似,Target Learning 致力于 挑选外卖更"感兴趣"的数据,即人为为更重要的数据添加 bias.例如我们当前 ...
- 论文笔记:Visual Object Tracking based on Adaptive Siamese and Motion Estimation Network
Visual Object Tracking based on Adaptive Siamese and Motion Estimation 本文提出一种利用上一帧目标位置坐标,在本帧中找出目标可能出 ...
- 论文笔记 - GRAD-MATCH: A Gradient Matching Based Data Subset Selection For Efficient Learning
Analysis Coreset 是带有权重的数据子集,目的是在某个方面模拟完整数据的表现(例如损失函数的梯度,既可以是在训练数据上的损失,也可以是在验证数据上的损失): 给出优化目标的定义: $w^ ...
- 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 2016.10.06 官方 ...
- 论文笔记系列-Neural Architecture Search With Reinforcement Learning
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...
- 论文笔记:Deep Attentive Tracking via Reciprocative Learning
Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主 ...
- 论文笔记:(CVPR2017)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet ...
- 论文笔记(6):Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation
这篇文章的主要贡献点在于: 1.实验证明仅仅利用图像整体的弱标签很难训练出很好的分割模型: 2.可以利用bounding box来进行训练,并且得到了较好的结果,这样可以代替用pixel-level训 ...
- 论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach
Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduc ...
随机推荐
- 浅拷贝工具类,快速将实体类属性值复制给VO
/** * 浅拷贝的工具类 */ public class PropertiesUtil { /** * 两个类,属性名一样的元素,复制成员. */ public static void copy(O ...
- 二叉搜索树TREE(线段树,区间DP)
前言 线段树+区间DP题,线段树却不是优化DP的,是不是很意外? 题面 二叉搜索树是一种二叉树,每个节点都有一个权值,并且一个点的权值比其左子树里的点权值都大,比起右子树里的点权值都小. 一种朴素的向 ...
- java方法---定义,调用
定义,调用 1.方法的定义 方法就是一段用来完成特定功能的代码片段,类似于其它语言的函数. 方法用于定义该类或该类的实例的行为特征和功能实现.方法是类和对象行为特征的抽象. 方法很类似于面向过程中的函 ...
- 员工离职困扰?来看AI如何解决,基于人力资源分析的 ML 模型构建全方案 ⛵
作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...
- Enable_hint_table 使用
KingbaseES enable_hint_table 可以看成类似 oracle outline 工具,可以在不修改SQL 的情况下,通过hint 改变SQL 的执行计划. 一.启用enable_ ...
- 1.关于433MHz按键单片机解码
近段时间做项目要用到单片机接收433MHz按键发过来的码值,涉及短按.连按.长按,由于之前没有做过这方面一开始有点蒙,找遍网上都没有案例,现在项目完成了整理自己的一些心得和大家分享分享!!!直入主题. ...
- python一招完美搞定Chromedriver的自动更新
日常的web自动化过程中,我们常常用python selenium库来操纵Chrome浏览器实现网页的自动化.这其中有个比较头疼的问题:Chrome的更新频率非常频繁,与之对应的Chromedrive ...
- 如何在JavaScript中使用高阶函数
将另一个函数作为参数的函数,或者定义一个函数作为返回值的函数,被称为高阶函数. JavaScript可以接受高阶函数.这种处理高阶函数的能力以及其他特点,使JavaScript成为非常适合函数式编程的 ...
- 【WPF】实现动态切换语言(国际化)以及动态换肤功能
前言:以下内容,手把手从搭建到最终实现,完成多语言切换以及换装功能. 本地系统环境:win 10 编译器环境:VS2022 社区版 .NET 环境: .NET 6 1.新建一个WPF项目 2.新建完毕 ...
- Mybatis 一级缓存和二级缓存原理区别 (图文详解)
Java面试经常问到Mybatis一级缓存和二级缓存,今天就给大家重点详解Mybatis一级缓存和二级缓存原理与区别@mikechen Mybatis缓存 缓存就是内存中的数据,常常来自对数据库查询结 ...