Part 1: Theory

目录:

  • What's GMM?
  • How to solve GMM?
  • What's EM?
  • Explanation of the result

What's GMM?

GMM is short for Guassian Mixture Model, which can be represented as follows:
\[
p(\mathbf{x}) = \sum_{k=1}^{K}\pi_kp(\mathbf{x}|\theta_k)
\]

where,
\[
p(\mathbf{x}|\theta_k) = \frac{1}{2\pi^{\frac{d}{2}}|\Sigma_k|^{\frac{1}{2}}}exp\left[-\frac{1}{2}\left( \mathbf{x} - \mathbf{\mu_k} \right)^T\Sigma_k^{-1}\left( \mathbf{x} - \mathbf{\mu_k} \right)\right]
\]

represents the k$th$ Guassian componets of GMM and $\pi_k$ represents the scale factor of the k$th$ Guassian componets.

GMM can be used to estimate the PDF of given data, that is to say, we can suppose that the given data obey GMM distribution(we can also suppose that the given data obey single Guassian distribution, but GMM can describe more complex distribution).

Here is the problem, if the given data is showed as Figure 1, how can we estimate the distribution of these data?

Figure 1

If we use MLE(Maximum Likehood Estimation) to solve this problem, namely:
\[
\begin{split}
&\max L = \max log \prod_{n=1}^{N}p(\mathbf{x_n}) = max \sum_{n=1}^{N}log\sum_{k=1}^{K}\pi_kp(\mathbf{x_n}|\theta_k)\\
&\nabla_{\pi_k}L = 0 \quad \nabla_{\mu_k}L = 0 \quad \nabla_{\Sigma_k}L = 0
\end{split}
\]

We can't get the analytic solution, thus we should use the other algorithm to solve GMM.

How to solve GMM?

To begin with, let's analysis this GMM problem first. If we can get the parameters in GMM, which are $\pi_k, \Sigma_k$ and $\mu_k$, we solve GMM. So, our algorithm should estimate $\pi_k, \Sigma_k$ and $\mu_k$.

To simplify this problem, if we know each data point's Guassian distribution sperately, in other words, each data point belongs to one certain Guassian distribution and we have known that which Guassian distribution each data point belongs to, then we can use MLE to solve GMM sperately.

For example, in Figure 2, if have known that the same color data point from the same Guassian distribution, we can use MLE to each color group sperately to estimate $\Sigma_k$ and $\mu_k$. If these five color group have the same quntity of data points, then $\pi_k = 0.2$, $k=1,2,3,4,5$. In this situation, GMM can be easily solved.

Figure 2

But, the problem is, we don't know which Guassian distribution each data point belongs to ! Thus there should be a hidden parameter to control which Guassian distribution the n$th$ data point belongs to.

Now lets define
$$z_{nk}\in\{0,1\}$$

$z_{nk}=1$ for the n$th$ point belongs the k$th$ Guassian distribution

$z_{nk}=0$ for the n$th$ point doesn't belong the k$th$ Guassian distribution

Use $z_{nk}$ we can rewrite the likehood function as follows:
\[
L = \log \prod_{i=1}^{N}\prod_{k=1}^{K}\pi_k^{z_{nk}}p(\mathbf{x_n}|\theta_k)^{z_{nk}}\\
\]

Notice that, if we define $z_{nk}$, then each data point can be decribe by only one guassian distribution. Thus, $\prod_{k=1}^{K}\pi_k^{z_{nk}}p(\mathbf{x_n}|\theta_k)^{z_{nk}}$ can be used to describe each data point's probability density. Although $\prod_{k=1}^{K}\pi_k^{z_{nk}}p(\mathbf{x_n}|\theta_k)^{z_{nk}}$ has the form of '$\prod$', $z_{nk}$ can be 1 only one time when given $n$ for all $k$.

Lets continue to write likehood function:
\[
\begin{split}
L &= \log \prod_{i=1}^{N}\prod_{k=1}^{K}\pi_k^{z_{nk}}p(\mathbf{x_n}|\theta_k)^{z_{nk}}\\
& = \sum_{i=1}^{N}\sum_{k=1}^{K}\log\pi_k^{z_{nk}} p(\mathbf{x_n}|\theta_k)^{z_{nk}}\\
& = \sum_{i=1}^{N}\sum_{k=1}^{K}\left[z_{nk}\log\pi_k + z_{nk}\log p(\mathbf{x_n}|\theta_k)\right]\\
& = \sum_{i=1}^{N}\sum_{k=1}^{K}\left[z_{nk}\log\pi_k + z_{nk}\log p(\mathbf{x_n}|\Sigma_k,\mathbf{\mu_k})\right]
\end{split}
\]

In this likehood function, there are three exposed parameters $\pi_k$, $\Sigma_k$ and $\mathbf{\mu_k}$, which we will solve. There is one hidden parameter $z_{nk}$, which is not included in the final result.

Now, how to solve exposed parameter $\pi_k$, $\Sigma_k$ and $\mathbf{\mu_k}$ with respect to the hidden paramer $z_{nk}$ ?

What's EM?

To solve above question, we should use EM algorithm, which has two parts: E(Expection) part and M(Maximum) part.

E part: calculating the exception of the likehood function with respect to hidden parameter.

M part: finding the right exposed parameters that maximize the expection.And go back E part to iterate.(Notice that the hidden parameter and exposed parameters influence each other! Thus, when go to the E part again, the exception will change.)

As for the above GMM problem, the hidden parameter is $z_{nk}$.

So, in E part, we should calculate the expection of the likehood function with respect to $z_{nk}$, which is:

\[
\begin{split}
Q &= E_{z_{nk}}\{L\}\\
& = E_{z_{nk}}\{ \sum_{i=1}^{N}\sum_{k=1}^{K}\left[z_{nk}\log\pi_k + z_{nk}\log p(\mathbf{x_n}|\Sigma_k,\mathbf{\mu_k})\right] \}\\
& = \sum_{i=1}^{N}\sum_{k=1}^{K}p(z_{nk}=1)\left[\log\pi_k + \log p(\mathbf{x_n}|\Sigma_k,\mathbf{\mu_k})\right] + \sum_{i=1}^{N}\sum_{k=1}^{K}p(z_{nk}=0)\left[0\log\pi_k + 0\log p(\mathbf{x_n}|\Sigma_k,\mathbf{\mu_k})\right]\\
& = \sum_{i=1}^{N}\sum_{k=1}^{K}p(z_{nk}=1)\left[\log\pi_k + \log p(\mathbf{x_n}|\Sigma_k,\mathbf{\mu_k})\right]
\end{split}
\]

Notice that, in interation process (Suppose we have known $\pi_k$, $\Sigma_k$ and $\mathbf{\mu_k}$)
\[
p(z_{nk}=1) = \frac{\pi_k p(\mathbf{x_n}|\Sigma_k,\mathbf{\mu_k})}{\sum_{j=1}^{K}\pi_j p(\mathbf{x_n}|\Sigma_j,\mathbf{\mu_j})}
\]

In M part:
\[
\nabla_{\pi_k}Q = 0 \quad \nabla_{\mu_k}Q = 0 \quad \nabla_{\Sigma_k}Q = 0
\]

We can get:
\[
\begin{split}
&\mathbf{\mu_k}^{new} = \frac{1}{N_k}\sum_{n=1}^{N}p(z_{nk}=1)\mathbf{x_n}\\
&\Sigma_k^{new} = \frac{1}{N_k}\sum_{n=1}^{N}p(z_{nk}=1)(\mathbf{x} - \mathbf{\mu_k^{new}})(\mathbf{x} - \mathbf{\mu_k^{new}})^T\\
&\pi_k^{new} = \frac{N_k}{N}\\
&N_k = \sum_{i=1}^{n}p(z_{nk}=1)
\end{split}
\]

Thus we can firstly initial $\pi_k$, $\Sigma_k$ and $\mathbf{\mu_k}$, then calculate $p(z_{nk}=1)$, then calculate new $\pi_k$, $\Sigma_k$ and $\mathbf{\mu_k}$, the calculate $p(z_{nk}=1)$, then ... until the solution converges.

Explanation of the result

Analyzing the result, there is an explanation:

The result can be treated as cluster, which cluster $N$ people to $K$ groups :

1. Number of people in the k$th$ group($N_k$) is the sum of gene($p(z_{nk}=1)$), which represents how much the n$th$ people belongs to the k$th$ group.

2. Each person has a weight($\mathbf{x_n}$), so when we cluster people in groups, we want to know what's the average weight($\mathbf{\mu_k}$) in each group, and what's the weight variance($\Sigma_k$) in each group.

3. When we calculate the average weight in one group, we should calculate the total weight in this group($\sum_{n=1}^{N}p(z_{nk}=1)\mathbf{x_n}$), and then divide the number of people in this group($N_k$).

4. When we calculate the weight variance in one group, we should calculate the total weight variance in one group($\sum_{n=1}^{N}p(z_{nk}=1)(\mathbf{x} - \mathbf{\mu_k^{new}})(\mathbf{x} - \mathbf{\mu_k^{new}})^T$), and then divide the number of people in this group($N_k$).

5. $\pi_k$ can treated as the population proportion that the k$th$ group takes up.

Matlab code for em algorithm can be found in "EM and GMM(Code)"

EM and GMM(Theory)的更多相关文章

  1. EM and GMM(Code)

    In EM and GMM(Theory), I have introduced the theory of em algorithm for gmm. Now lets practice it in ...

  2. css里px em rem特点(转)

    1.px特点: 1.IE无法调整px作为单位的字体大小: 2.Firefox能够调整px.em和rem. px是像素,是相对长度单位,是相对于显示器屏幕分辨率而言的. 2.em特点: 1.em的值并不 ...

  3. px和em的区别(转)

    在国内网站中,包括三大门户,以及“引领”中国网站设计潮流的蓝色理想,ChinaUI等都是使用了px作为字体单位.只有百度好歹做了个可调的表率.而 在大洋彼岸,几乎所有的主流站点都使用em作为字体单位, ...

  4. B和strong以及i和em的区别(转)

    B和strong以及i和em的区别 (2013-12-31 13:58:35) 标签: b strong i em 搜索引擎 分类: 网页制作 一直以来都以为B和strong以及i和em是相同的效果, ...

  5. 机器学习算法(优化)之二:期望最大化(EM)算法

    EM算法概述 (1)数学之美的作者吴军将EM算法称之为上帝的算法,EM算法也是大家公认的机器学习十大经典算法之一.EM是一种专门用于求解参数极大似然估计的迭代算法,具有良好的收敛性和每次迭代都能使似然 ...

  6. HTML5周记(一)

    各位开发者朋友和技术大神大家好!博主刚开始学习html5 ,自本周开始会每周更新技术博客,与大家分享每周所学.鉴于博主水品有限,如发现有问题的地方欢迎大家指正,有更好的意见和建议可在评论下方发表,我会 ...

  7. 从零开始学 Web 之 移动Web(一)屏幕相关基本知识,调试,视口,屏幕适配

    大家好,这里是「 从零开始学 Web 系列教程 」,并在下列地址同步更新...... github:https://github.com/Daotin/Web 微信公众号:Web前端之巅 博客园:ht ...

  8. day6 云道页面 知识点梳理(1)

    关于块级元素.行内元素.行内块元素的梳理 (1)块级元素 特点:   a.可以设置宽高,行高,外边距和内边距   b.块级元素会独占一行    c.宽度默认是容器的100%    d.可以容纳内联元素 ...

  9. EM算法(2):GMM训练算法

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(2):GMM训练算法 1. 简介 GMM模型全称为Ga ...

随机推荐

  1. JS利用短路原理简写if语句

    看GoogleDoodle-Dance的源代码,学习到一个小知识——简写if语句. 几乎所有语言中||和&&都遵循“短路”原理,如&&中第一个表达式为假就不会去处理第二 ...

  2. IOS开发-UI学习-delegate(代理)的使用,键盘消失

    代理是IOS开发中用到的一种设计模式.今天做了一个代理的小练习: 以下项目实现了两个页面之间的相互切换,并且在切换页面的时候完成了从一个页面往另一个页面的传值.从主页面往其他页面传值是容易的,但是反过 ...

  3. sublime text2的插件熟悉

    今天加班,开会.于是整理下sublime text的插件. 1.安装了tag插件.负责html的格式化.从百度云下载了文件,放入了插件包的目录下. 2.启用了alignment 快捷键 ctr+alt ...

  4. 复习php的一些函数

    2014.07.04 查看ecshop的一些源码,学习了一些函数.

  5. xml数据传输

  6. Unable to list the users SQLSTATE =S0002

    powerdesinger mysql 反向工程时报错 解决方案: database ->change the Target DNMS 修改DBMS为mysql 的对应版本 修改后,点击确定即可 ...

  7. Linux用户和用户组管理总结

    Linux下和用户和用户组管理有关的配置文件: /etc/group Group account information. /etc/gshadow Secure group account info ...

  8. Core Data使用之一(Swift): 保存

    Core Data 用于永久化数据,它是基于SQLite数据库的保存一门技术. 那么,在Swift中,它是如何实现的呢? 首先,需要新建一个模板,打开工程中的xcdatamodeld文件,点击“Add ...

  9. github 之 下载历史版本

    1.打开github中要下载的项目 2.点击commits 点击上图中标记的地方,进入下图所示: 3. 选择列表中的某个版本 4. Browse Files 5. 下载 点击上图中的 Download ...

  10. 使用布局(Layout资源)

    实际上从我们学习第一个Android应用开始,已经开始接触Android的Layout资源了,因此此处不会详细介绍Android Layout资源的知识,会对Layout资源进行简单的归纳. Layo ...