HDU 1198 Farm Irrigation (并检查集合 和 dfs两种实现)
Farm Irrigation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4977 Accepted Submission(s): 2137
to K, as Figure 1 shows.

Figure 1
Benny has a map of his farm, which is an array of marks denoting the distribution of water pipes over the whole farm. For example, if he has a map
ADC
FJK
IHE
then the water pipes are distributed like

Figure 2
Several wellsprings are found in the center of some squares, so water can flow along the pipes from one square to another. If water flow crosses one square, the whole farm land in this square is irrigated and will have a good harvest in autumn.
Now Benny wants to know at least how many wellsprings should be found to have the whole farm land irrigated. Can you help him?
Note: In the above example, at least 3 wellsprings are needed, as those red points in Figure 2 show.
M or N denotes the end of input, else you can assume 1 <= M, N <= 50.
2 2
DK
HF 3 3
ADC
FJK
IHE -1 -1
2
3
题意:有如上图11种土地块,块中的绿色线条为土地块中修好的水渠,如今一片土地由上述的各种土地块组成,须要浇水,问须要打多少口井。
比如以下这个土地块
ADC
FJK
IHE
then the water pipes are distributed like
如图对于能相连的地仅仅须要打一口井。所以以上须要打三口井就能浇全部的块。稍加分析就可得出本质上就是集合的合并,最后求有几个集合的问题,非常easy想到并查集。仅仅须要对每一个地块与右方和下方的地块进行合并就可以。
合并之前先推断能否连通。若能连通则合并。不能连通,则不能合并。
能连通的时候就是正常的并查集了。此题有个问题,题目说最大50*50个地块,可是提交一直出错,看别人说的改成550*550直接A了,所以说这里题目叙述有误。
后来想了想。能够把每一个地块的四个方向用二进制来表示,用位运算来推断可连性。
#include <cstdio>
#include <cstdlib>
#include <climits> const int MAX = 550; //存储11中类型的土地,二维中的0 1 2 3分别代表这样的类型的土地的左上右下
//为1表示这个方向有接口。为0表示这个方向没有接口
const int type[11][4]={{1,1,0,0},{0,1,1,0},
{1,0,0,1},{0,0,1,1},
{0,1,0,1},{1,0,1,0},
{1,1,1,0},{1,1,0,1},
{1,0,1,1},{0,1,1,1},
{1,1,1,1}
}; const bool VERTICAL = true; //pre数组就是正常的并查集中所用,可是在合并的时候要注意将二维坐标转换成一维的标号,此处用行优先
int pre[MAX*MAX+1],cnt,m,n;
char farm[MAX][MAX]; void init(int n){
int i;
for(i=1;i<=n;++i){
pre[i] = i;
}
cnt = n;
} int root(int x){
if(x!=pre[x]){
pre[x] = root(pre[x]);
}
return pre[x];
} void merge(int ax,int ay,int bx,int by,bool dir){
if(bx>n || by>m)return;//超出地图的部分不进行合并
bool mark = false;//标识两块地是否可连
int ta,tb;//两点的类型值0-10 ta = farm[ax][ay]-'A';
tb = farm[bx][by]-'A'; if(dir){//竖直方向推断可连性
if(type[ta][3] && type[tb][1])mark = true;
}else{//水平方向推断可连性
if(type[ta][2] && type[tb][0])mark = true;
} if(mark){//仅仅要可连就合并,这就是正常的并查集了
int fx = root((ax-1)*m+ay);
int fy = root((bx-1)*m+by);
if(fx!=fy){
pre[fy] = fx;
--cnt;
}
}
} int main(){
//freopen("in.txt","r",stdin);
int i,j;
while(scanf("%d %d",&n,&m)!=EOF){
if(n==-1 && m==-1)break;
init(n*m);
for(i=1;i<=n;++i){
scanf("%s",farm[i]+1);
}
for(i=1;i<=n;++i){
for(j=1;j<=m;++j){
merge(i,j,i+1,j,VERTICAL);
merge(i,j,i,j+1,!VERTICAL);
}
}
printf("%d\n",cnt);
}
return 0;
}
下面是位运算的实现,就相对简化了点。
#include <cstdio>
#include <cstdlib>
#include <climits> const int MAX = 550; const int type[11] = {3,6,9,12,10,5,7,11,13,14,15};
const bool VERTICAL = true; //pre数组就是正常的并查集中所用,可是在合并的时候要注意将二维坐标转换成一维的标号。此处用行优先
int pre[MAX*MAX+1],cnt,m,n;
char farm[MAX][MAX]; void init(int n){
int i;
for(i=1;i<=n;++i){
pre[i] = i;
}
cnt = n;
} int root(int x){
if(x!=pre[x]){
pre[x] = root(pre[x]);
}
return pre[x];
} void merge(int ax,int ay,int bx,int by,bool dir){
if(bx>n || by>m)return;//超出地图的部分不进行合并
bool mark = false;//标识两块地是否可连
int ta,tb;//两点的类型值0-10 ta = farm[ax][ay]-'A';
tb = farm[bx][by]-'A'; if(dir){//竖直方向推断可连性
if(((type[ta]>>3) & 1) && ((type[tb]>>1) & 1))mark = true;
}else{//水平方向推断可连性
if(((type[ta]>>2) & 1) && (type[tb] & 1))mark = true;
} if(mark){//仅仅要可连就合并,这就是正常的并查集了
int fx = root((ax-1)*m+ay);
int fy = root((bx-1)*m+by);
if(fx!=fy){
pre[fy] = fx;
--cnt;
}
}
} int main(){
//freopen("in.txt","r",stdin);
int i,j;
while(scanf("%d %d",&n,&m)!=EOF){
if(n==-1 && m==-1)break;
init(n*m);
for(i=1;i<=n;++i){
scanf("%s",farm[i]+1);
}
for(i=1;i<=n;++i){
for(j=1;j<=m;++j){
merge(i,j,i+1,j,VERTICAL);
merge(i,j,i,j+1,!VERTICAL);
}
}
printf("%d\n",cnt);
}
return 0;
}
下面是dfs实现
#include <cstdio>
#include <cstdlib>
#include <climits>
#include <cstring> const int MAX = 550; const int type[11] = {3,6,9,12,10,5,7,11,13,14,15};
const int dirx[4] = {0,-1,0,1},diry[4]={-1,0,1,0};
int m,n;
char farm[MAX][MAX];
int visit[MAX][MAX]; bool yes(int ax,int ay,int bx,int by,int dir){
bool mark = false;
int ta,tb; if(bx<1 || bx>n || by<1 || by>m)return false;
ta = farm[ax][ay]-'A';
tb = farm[bx][by]-'A'; if(dir==0){//向左
if((type[ta] & 1) && ((type[tb]>>2) & 1))mark = true;
}else if(dir==1){//向上推断可连性
if(((type[ta]>>1) & 1) && ((type[tb]>>3) & 1))mark = true; }else if(dir==2){//水平向右
if(((type[ta]>>2) & 1) && (type[tb] & 1))mark = true;
}else{//水平向下推断可连性
if(((type[ta]>>3) & 1) && ((type[tb]>>1) & 1))mark = true;
}
return mark;
} void dfs(int x,int y){
if(visit[x][y])return;
visit[x][y] = 1;
int tx,ty,i;
for(i=0;i<4;++i){
tx = x + dirx[i];
ty = y + diry[i];
if(yes(x,y,tx,ty,i)){
dfs(tx,ty);
}
}
} int main(){
//freopen("in.txt","r",stdin);
int i,j,ans;
while(scanf("%d %d",&n,&m)!=EOF){
if(n==-1 && m==-1)break;
ans = 0;
memset(visit,0,sizeof(visit));
for(i=1;i<=n;++i){
scanf("%s",farm[i]+1);
}
for(i=1;i<=n;++i){
for(j=1;j<=m;++j){
if(visit[i][j])continue;
++ans;
dfs(i,j);
}
}
printf("%d\n",ans);
}
return 0;
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
HDU 1198 Farm Irrigation (并检查集合 和 dfs两种实现)的更多相关文章
- HDU 1198 Farm Irrigation(状态压缩+DFS)
题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1198 题目: Farm Irrigation Time Limit: 2000/1000 MS (Ja ...
- hdu.1198.Farm Irrigation(dfs +放大建图)
Farm Irrigation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDU 1198 Farm Irrigation(并查集,自己构造连通条件或者dfs)
Farm Irrigation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- HDU 1198 Farm Irrigation(并查集+位运算)
Farm Irrigation Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Tot ...
- hdu 1198 Farm Irrigation(深搜dfs || 并查集)
转载请注明出处:viewmode=contents">http://blog.csdn.net/u012860063?viewmode=contents 题目链接:http://acm ...
- HDU 1198 Farm Irrigation (并查集优化,构图)
本题和HDU畅通project类似.仅仅只是畅通project给出了数的连通关系, 而此题须要自己推断连通关系,即两个水管能否够连接到一起,也是本题的难点所在. 记录状态.不断combine(),注意 ...
- hdu 1198 Farm Irrigation(并查集)
题意: Benny has a spacious farm land to irrigate. The farm land is a rectangle, and is divided into a ...
- hdu 1198 Farm Irrigation
令人蛋疼的并查集…… 我居然做了大量的枚举,居然过了,我越来越佩服自己了 这个题有些像一个叫做“水管工”的游戏.给你一个m*n的图,每个单位可以有11种选择,然后相邻两个图只有都和对方连接,才判断他们 ...
- 从上面的集合框架图可以看到,Java 集合框架主要包括两种类型的容器,一种是集合(Collection),存储一个元素集合,另一种是图(Map),存储键/值对映射
从上面的集合框架图可以看到,Java 集合框架主要包括两种类型的容器,一种是集合(Collection),存储一个元素集合,另一种是图(Map),存储键/值对映射.Collection 接口又有 3 ...
随机推荐
- Foursquare 8.0 :聪明人给互联网公司上的流量转化课
今年 5 月上线的 Swarm 虽然应用制作精良,但不免让人怀疑是 Foursquare一次失败的互联网公司服务越界和用户忠诚度试水.但非常快这群聪明人让我们发现事情并没有这么简单:他们给互联网公司们 ...
- 重新想象 Windows 8 Store Apps (17) - 控件基础: Measure, Arrange, GeneralTransform, VisualTree
原文:重新想象 Windows 8 Store Apps (17) - 控件基础: Measure, Arrange, GeneralTransform, VisualTree [源码下载] 重新想象 ...
- 活动图(Activity Diagram) - 项目分解文章
案例基础上登录用户进行操作的每个模块. 1. 员 (1) 列车顺序表 (2) 货车装卸报告(数据处理) (3) 货车装卸报告(查看) 2. 管理员 (1) password管理 (2) 查看日志 (3 ...
- Eclipse正确导入第三方project
前言 昨晚,在不同的Android做出最终的在线测试时间,在其他平台上正常升级的提示突然报告出来"java.lang.NoClassDefFoundError"误.拉什adb lo ...
- 《深入了解mybatis原则》 MyBatis架构设计和案例研究
MyBatis这是现在很流行ORM框架,这是非常强大.事实上现却比較简单.优雅. 本文主要讲述MyBatis的架构设计思路,而且讨论MyBatis的几个核心部件.然后结合一个select查询实例.深入 ...
- android 他们定义对话框
创建一个布局文件 my_dialog.xml <?xml version="1.0" encoding="utf-8"?> <Relative ...
- android AlarmManager采用
Android的闹钟实现机制非常easy, 仅仅须要调用AlarmManager.Set()方法将闹钟设置提交给系统,当闹钟时间到后,系统会依照我们的设定发送指定的广播消息.我们写一个广播去接收消息做 ...
- 数据结构 - 双链表(C++)
// ------DoublyLinkedList.h------ template <class T> class DNode { private: // 指向左.右结点的指针 DNod ...
- [webapi] 如何在查看api时 显示api的说明
首先在Controller的方法中 写上相关注释,如下图 然后 右击webapi项目点属性.按照下图选择 红色框中内容要保持一致 然后保存. 在项目中找到到这个文件Areas/HelpPage/App ...
- SQL Server管理员专用连接的使用
原文:SQL Server管理员专用连接的使用 作为一名DBA,经常会处理一些比较棘手的服务无响应问题,鉴于事态的严重性,多数DBA可能直接用“重启”大法,以便尽快的恢复生产环境的正常运转,但是多数情 ...