解题:CF1055F Tree and XOR
树上路径是可以通过到根的路径和LCA差出来的,所以建立一棵Trie树按位贪心即可......吗?
发现空间并不够,需要我们每层现建,要记录每个数和它异或答案之后在这一层插进去的编号
#include<cstdio>
#include<cstring>
#include<algorithm>
#define lli long long
using namespace std;
const int N=1e6+;
int n,rd,ch,tot;
lli k,sz,ans,val[N];
int a[N],b[N],siz[N],son[N][];
int ID(int nde,int sid)
{
if(!son[nde][sid])
son[nde][sid]=++tot;
return son[nde][sid];
}
void i207M()
{
for(int i=;i<=tot;i++)
son[i][]=son[i][]=siz[i]=;
tot=sz=ch=;
}
int main()
{
scanf("%d%lld",&n,&k);
for(int i=;i<=n;i++)
scanf("%d%lld",&rd,&val[i]),val[i]^=val[rd];
for(int i=;i<=n;i++) a[i]=b[i]=;
for(int i=;~i;i--)
{
i207M();
for(int j=;j<=n;j++)
siz[a[j]=ID(a[j],(val[j]>>i)&)]++;
for(int j=;j<=n;j++)
sz+=siz[son[b[j]][(val[j]>>i)&]];
if(sz<k) k-=sz,ch=,ans+=1ll<<i;
for(int j=;j<=n;j++)
b[j]=son[b[j]][((val[j]>>i)&)^ch];
}
printf("%lld",ans);
return ;
}
解题:CF1055F Tree and XOR的更多相关文章
- CF1055F Tree and XOR
CF1055F Tree and XOR 就是选择两个数找第k大对儿 第k大?二分+trie上验证 O(nlognlogn) 直接按位贪心 维护可能的决策点(a,b)表示可能答案的对儿在a和b的子树中 ...
- [atAGC052F]Tree Vertices XOR
结论 注意到如果$x$周围有偶数个1,对$x$操作显然不会改变$a_{x}$,因此不妨强制操作的点周围要有奇数个1,不难发现此时恰好会改变该点,即令$a_{x}=a_{x}\oplus 1$ 称$\{ ...
- [atAGC052B]Tree Edges XOR
定义两点的距离$d(x,y)$为$x$到$y$路径上边权异或和,则两棵树相同当且仅当$\forall 1\le i\le n$,$d(1,i)$相同 新建一个节点0,连边$(0,1)$,初始权值为0, ...
- bzoj2006 [NOI2010]超级钢琴 (及其拓展)
bzoj2006 [NOI2010]超级钢琴 给定一个序列,求长度在 \([L,\ R]\) 之间的区间和的前 \(k\) 大之和 \(n\leq5\times10^5,\ k\leq2\times1 ...
- CF241B Friends
CF241B Friends 和Tree and Xor思路一样CF1055F Tree and XOR 直接找到第k大val,可以直接建出trie,然后按位贪心 考虑比val大的数的和 还是用b[i ...
- BZOJ3282: Tree
传送门 又是权限题= =,过了NOIp我就要去当一只权限狗! LCT裸题,get到了两个小姿势. 1.LCA操作应该在access中随时updata 2.Link操作可以更简单 void Link(i ...
- luogu P2574 XOR的艺术 (线段树)
luogu P2574 XOR的艺术 (线段树) 算是比较简单的线段树. 当区间修改时.\(1 xor 1 = 0,0 xor 1 = 1\)所以就是区间元素个数减去以前的\(1\)的个数就是现在\( ...
- hdu-3397 Sequence operation 线段树多种标记
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3397 题目大意: 0 a b表示a-b区间置为0 1 a b表示a-b区间置为1 2 a b表示a- ...
- 1014: [JSOI2008]火星人prefix - BZOJ
Description 火星人最近研究了一种操作:求一个字串两个后缀的公共前缀.比方说,有这样一个字符串:madamimadam,我们将这个字符串的各个字符予以标号:序号: 1 2 3 4 5 6 7 ...
随机推荐
- 2017-2018-2 20155203《网络对抗技术》 Exp8:Web基础
基础问题回答 (1)什么是表单 我认为,form概念主要区分于table,table是用网页布局设计,是静态的,form是用于显示和收集信息传递到服务器和后台数据库中,是动态的: 以下是表单的百度百科 ...
- CISCN 应用环境相关指令备忘录
1 - 关于Python环境的 使用Anaconda2管理Python环境 1.1 - 安装 官网下载安装包下载. 1.2 - 创建Python环境 localhost:template mac$ c ...
- 20155330 《网络对抗》 Exp2 后门原理与实践
20155330 <网络对抗> 实验二 后门原理与实践 基础问题回答 例举你能想到的一个后门进入到你系统中的可能方式? 在网站上下载非官方软件,所下载的软件中携带伪装过的后门程序. 例举你 ...
- pygame 入门实例
本文基于win7(64) + py3.5(64)环境. 本文是这里的一篇学习笔记.加入了自己的理解. 本文最终目的是实现一个飞机躲避导弹的游戏. 1.核心概念 pygame 的核心概念有: Surfa ...
- 51nod 小朋友的笑话
链接 分析: 每次操作把以前没有出现这个数的设为1,有这个数的设为0.首先将当前区间设为1,考虑有set维护这个颜色出现的区间,然后把所有与当前区间相交的拿出来,修改为0. 复杂度?每次操作的线段只会 ...
- Selenium-Switch与SelectApi接口详解
Switch 我们在UI自动化测试时,总会出现新建一个tab页面.弹出一个浏览器级别的弹框或者是出现一个iframe标签,这时我们用WebDriver提供的Api接口就无法处理这些情况了.需要用到Se ...
- maven常用命令集
maven常用命令 mvn compile 编译主程序源代码,不会编译test目录的源代码.第一次运行时,会下载相关的依赖包,可能会比较费时间. mvn test-compile 编译测试代码,c ...
- MVC的多页面后台管理系统
MVC的多页面后台管理系统 同样功能的后台管理系统,也是可以使用 ASP.NET MVC .Web API 和JQuery 来制作. 所有的功能都与Angular js的单页面相同.应用层所有的方法都 ...
- zabbix设置微信报警的配置过程
zabbix设置微信报警的配置过程 转发:https://blog.csdn.net/qq_31613055/article/details/78831607 微信企业号的申请 注册的地址https: ...
- [PLC]ST语言四:INV_MEP_MEF_PLS_PLF_MC_MCR
一:INV_MEP_MEF_PLS_PLF_MC_MCR 说明:简单的顺控指令不做其他说明. 控制要求:无 编程梯形图: 结构化编程ST语言: (*运算结果的反转INV(EN);*) M415:=in ...