题目背景

感谢@throusea 贡献的两组数据

题目描述

回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*)。她发现,把大池子视为01矩阵(0表示对应位置无鱼,1表示对应位置有鱼)有助于决定吃鱼策略。

在代表池子的01矩阵中,有很多的正方形子矩阵,如果某个正方形子矩阵的某条对角线上都有鱼,且此正方形子矩阵的其他地方无鱼,猫猫就可以从这个正方形子矩阵“对角线的一端”下口,只一吸,就能把对角线上的那一队鲜鱼吸入口中。

猫猫是个贪婪的家伙,所以她想一口吃掉尽量多的鱼。请你帮猫猫计算一下,她一口下去,最多可以吃掉多少条鱼?

输入输出格式

输入格式:

有多组输入数据,每组数据:

第一行有两个整数n和m(n,m≥1),描述池塘规模。接下来的n行,每行有m个数字(非“0”即“1”)。每两个数字之间用空格隔开。

对于30%的数据,有n,m≤100

对于60%的数据,有n,m≤1000

对于100%的数据,有n,m≤2500

输出格式:

只有一个整数——猫猫一口下去可以吃掉的鱼的数量,占一行,行末有回车。

输入输出样例

输入样例#1:

4 6
0 1 0 1 0 0
0 0 1 0 1 0
1 1 0 0 0 1
0 1 1 0 1 0

输出样例#1:

3

说明

右上角的

1 0 0
0 1 0
0 0 1

解析:

这道题跟P1387 最大正方形 比较像,具体做法都是去检验形成新正方形的可行性。

想了很久不知道怎么处理从上面和左边的转移,原本就是想统计\(0\)的个数的,可惜没尝试。


两次\(dp\),分别处理两条对角线的最优解。

以从左上到右下的对角线为例,需要预处理出任意位置的前面的\(0\)的数量\(pre1[i][j],pre2[i][j]\)。

显然,如果某处是\(1\),那么它的下面的和右边的点前面的\(0\)的数量就是\(0\),如果是\(0\)那么它的下面的和右边的点的前面的\(0\)就是此处的\(0\)的个数加\(1\)。

设\(dp[i][j]\)表示以\((i,j)\)为右下角顶点的满足题目条件的正方形的边长,由定义得在\((1\sim i,1\sim j)\)这个区域的正方形除了对角线上是\(1\)外,其他地方都是\(0\)。

所以在考虑状态转移时,对于\(dp[i][j]\),我们已经得知\(dp[i-1][j-1]\)的最大正方形边长,那么也就得知在\((i-dp[i][j]\sim i,j-dp[i][j]\sim j )\)这个区域中,除了对角线上是\(1\)外其余都是\(0\)。如果要让\((i,j)\)为右下角顶点的正方形最大,我们就需要考虑上面提到的\(pre\),若当前位置这个\(pre\)还没\(dp[i-1][j-1]\)大,那我们只好让以\((i,j)\)为右下角顶点的正方形边长为\(pre[i][j]\)中的较小值了。

于是有状态转移方程:

\(dp[i][j]=min(dp[i-1][j-1],min(pre1[i-1][j],pre2[i][j-1]))+1\)

另一条对角线同理。

注意由于\(dp\)是以递推的形式进行的,所以我们可以边输入便处理,加快速度。

当然不这样也不会T的\(QWQ\)

参考代码:

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#define N 2505
#define INF 0x3f3f3f3f
#define ri register int
using namespace std;
int a[N][N],dp[N][N],pre1[N][N],pre2[N][N],n,m;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int main()
{
n=read();m=read();
int ans=0;
for(ri i=1;i<=n;i++)
for(ri j=1;j<=m;j++){
a[i][j]=read();
if(!a[i][j]){
pre1[i][j]=pre1[i-1][j]+1;
pre2[i][j]=pre2[i][j-1]+1;
}
else dp[i][j]=min(dp[i-1][j-1],min(pre1[i-1][j],pre2[i][j-1]))+1;
ans=max(dp[i][j],ans);
}
memset(dp,0,sizeof(dp));
memset(pre1,0,sizeof(pre1));
memset(pre2,0,sizeof(pre2));
for(ri i=1;i<=n;i++){
for(ri j=m;j>=1;j--){
if(!a[i][j]){
pre1[i][j]=pre1[i-1][j]+1;
pre2[i][j]=pre2[i][j+1]+1;
}
else dp[i][j]=min(dp[i-1][j+1],min(pre1[i-1][j],pre2[i][j+1]))+1;
ans=max(dp[i][j],ans);
}
}
cout<<ans<<endl;
return 0;
}

P1736 创意吃鱼法[二维dp]的更多相关文章

  1. P1736 创意吃鱼法 图的DP

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  2. P1387 最大正方形&&P1736 创意吃鱼法

    P1387 最大正方形 P1736 创意吃鱼法 两道类似的$DP$ 转移方程基本上类似于$f[i][j]=min(f[i-1][j-1],min(f[i][j-1],f[i-1][j]))$ 考虑构成 ...

  3. 洛谷 P1736 创意吃鱼法(多维DP)

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  4. 洛谷 P1736 创意吃鱼法 Label:dp || 前缀和

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  5. 洛谷P1736 创意吃鱼法 dp

    正解:dp 解题报告: 早就想写dp的题目辣!我发现我的dp好差啊QAQ所以看到列表的小朋友写dp的题目就跟着他们的步伐做下题好辣QwQ 这题的话没有那——么难,大概说下趴QwQ 首先说下题意 前面一 ...

  6. P1387 最大正方形 && P1736 创意吃鱼法(DP)

    题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...

  7. 洛谷 P1736 创意吃鱼法

    题目描述 题目链接:https://www.luogu.org/problemnew/show/P1736 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢( ...

  8. P1736 创意吃鱼法

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  9. P1736 创意吃鱼法 (动态规划)

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

随机推荐

  1. Django 之验证和授权

    一.验证和授权概述 Django有一个内置的授权系统.他用来处理用户.分组.权限以及基于cookie的会话系统.Django的授权系统包括验证和授权两个部分.验证是验证这个用户是否是他声称的人(比如用 ...

  2. Extjs GridField 总结

    此代码为完整代码,其中包含定位.使用 Enter 键,来实现 Tab 键. Ext.define('xxx.recordBook.view.EditGrid', { extend: 'Ext.form ...

  3. 14 windows下安装pygame模块

    pycharm安装-推荐 file->setting->project->project interpreter->右边的+号,搜索pygame,点击下方的install pa ...

  4. WUSTOJ 1327: Lucky Numbers(Java)

    题目链接:1327: Lucky Numbers Description A lucky number is made by the following rules: Given a positive ...

  5. 二十二、DMA驱动

    一.DMA简介 DMA(Direct Memory Access,直接内存存取),DMA传输将数据从一个地址空间复制到另外一个地址空间.传输过程由DMA控制器独立完成,它并没有拖延CPU的工作,可以让 ...

  6. docker 实践十一:docker 跨主机通讯

    在上一篇了解了关于 docker 的网络模型后,本篇就基于上一篇的基础来实现 docker 的跨主机通信. 注:环境为 CentOS7,docker 19.03. 本篇会尝试使用几种不同的方式来实现跨 ...

  7. golang 上传文件(包括 gin 实现)

    golang web服务有时候需要提供上传文件的接口,以下就是具体示例.为了示例简单(吐槽下 golang 的错误处理), 忽略了所有的错误处理.本文会用两种方式(标准库和gin)详细讲解 golan ...

  8. Scala Map与Tuple

    创建Map // 创建一个不可变的Map val ages = Map("Leo" -> 30, "Jen" -> 25, "Jack&q ...

  9. vue的就地复用--- v-for与:key

    v-for遵循的是vue的就地复用原则.文本与数据是绑定的,所以当文本被重新渲染的时候,列表也会被重新渲染. 就地复用只适用于不依赖子组件状态或临时DOM状态的列表渲染输出.[比如表单输入值的列表渲染 ...

  10. 【数论】小A进学校

    小A进学校 题目描述 近日,清华大学挖出来一个明清古墓.小A决定冒充考古系科研人员去盗墓.他遇到的第一个难关是来自校门口保安的质疑,因为小没有清华学生证,所以保安决定通过问问题的方式验证小A的身份. ...