【线性代数】6-5:正定矩阵(Positive Definite Matrices)
title: 【线性代数】6-5:正定矩阵(Positive Definite Matrices)
categories:
- Mathematic
- Linear Algebra
keywords: - Positive Definite Matrices
- Symmetric Matrices
- Eigenvalues
- Eigenvectors
toc: true
date: 2017-11-24 11:24:21
Abstract: 关于正定矩阵的相关知识总结,正定矩阵在数学中的一个应用
Keywords: Positive Definite Matrices,Symmetric Matrices,Eigenvalues,Eigenvectors
开篇废话
昨晚出了个新闻,红黄蓝还是什么的,发现我们广大人民热情特别高涨,各种谴责啊,阴谋论啊什么,感受到了什么是人言可畏,当我们的呦呦众口指向我们的敌人的时候或者被人陷害成所谓"敌人"的人的时候,那真是踏上一万只脚让人永世不得超生啊,法律不算数,全按照心情办。经济发展迅速,民智并没有开多大,前天在朋友圈里还卖东西,秀美食美景的可爱萌青年们,然后一瞬间变成了社会主义战士,口诛笔伐,还有之前抵制日货,抵制韩货的,说实话,这种人基本的用途的就是贡献劳动力,然后活在忽悠中,说啥信啥,搞民主投票?这种智商也就告别民主了。
再有一个就是删帖,删帖作为治国理政的必要途径,我觉得可以开发个智能分类系统(没准已经在用了)就是自动删帖,人工删太浪费人力,某些公司为了配合组织,也是让删啥删啥,节操算鸡毛,人民币才是硬道理。
然后就是如果小朋友们受到了侵害而没有执法部门保护,或者是执法部门有不作为的现象,而要依靠广大键盘侠,这不是回到原始社会了么?
小朋友们是全人类的希望,应该得到全社会的爱护!
Positive Definite Matrices
正定矩阵,对这个矩阵印象深刻,知道学了这节以后,才知道,正定矩阵就是"Positive Definite Matrices-正的确定矩阵",这个翻译也是耿直,
Positive Definite Matrices 定义为,对称矩阵,并且所有特征值全部大于0
那么我们第一个大问题就是如何确定一个矩阵是不是正定矩阵呢,求特征值肯定是根本方法,定义都说了,对称矩阵,特征值大于0,求出所有特征值,那么自然明朗了,但是有时候我们只需要知道是不是正定矩阵,而不需要知道特征值,这样的话计算代价有点大,我们需要找点别的招数,来避免求特征值。
接下来我们的目标是:
- 找到能快速判断对称矩阵的特征值都是正数
- 正定矩阵的重要应用
本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-6-5转载请标明出处
【线性代数】6-5:正定矩阵(Positive Definite Matrices)的更多相关文章
- 正定矩阵(positive definite matrix)
设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M正定矩阵. 正定矩阵在合同变换下可化为标准型, 即对角矩阵. 所有特征值大于零的对称矩阵也是正定矩阵. ...
- 正定矩阵(definite matrix)
1. 基本定义 在线性规划中,一个对称的 n×n 的实值矩阵 M,如果满足对于任意的非零列向量 z,都有 zTMz>0. 更一般地,对于 n×n 的 Hermitian 矩阵(原矩阵=共轭转置, ...
- a positive definite matrix
https://en.wikipedia.org/wiki/Definite_quadratic_form https://www.math.utah.edu/~zwick/Classes/Fall2 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- 【Math for ML】解析几何(Analytic Geometry)
I. 范数(Norm) 定义: 向量空间\(V\)上的范数(norm)是如下函数: \[ \begin{align} \|·\|:V→R, \notag \\ x→\|x\| \notag \end{ ...
- MIT课程
8.02 Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...
- ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...
- ECCV 2014 Results (16 Jun, 2014) 结果已出
Accepted Papers Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...
- ICLR 2013 International Conference on Learning Representations深度学习论文papers
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...
随机推荐
- poj 1837 天平问题(01背包变种)
题意:给你n个挂钩,m个砝码,要求砝码都用上,问有多少中方案数 题解:对于这道题目的状态,我们定义一个变量j为平衡度,当j=0的时候,表明天平平衡.定义dp[i][j]表达的含义为使用前n个砝码的时候 ...
- SQL 删除重复记录,并保留其中一条
--查找表中多余的重复记录select * from code_xz where code in (select code from code_xz group by code having coun ...
- .NET Core 发布部署问题
运行环境 操作系统 开发工具 frameworks .Net Core SDK 版本 托管运行 本地 ...
- C# 交换排序
用交换排序的方式实现对int类型的数组arrays从小到大排序 思路: 第一步:一个长度为n的数组,把最小的放第一行,第二小的数字放第二行,,,, 0(0为数组的第一项) 第一小的数字 1 ...
- JAVA 泛型 通配符? extends super限定,实例区分extends super限定的作用用法
java泛型中的关键字 ? 表示通配符类型 <? extends T> 既然是extends,就是表示泛型参数类型的上界,说明参数的类型应该是T或者T的子类. <? super T& ...
- post请求body格式
在PostMan中用Post方式,Body有form-data,x-www-form-urlencoded,raw,binary四种. 其中raw又分以下7种. 现在来区分一下: form-data是 ...
- CSS 样式表{二}
1 选择器的优先级 选择器的优先主要考虑选择器的权重 可以将各种选择器的权重以数值来表示,数值越大,优先级越高 选择器 权重值 标签selector 1 类选择器 10 ID选择器 100 行内样式 ...
- HugePages概述--翻译自19C文档
翻译自: https://docs.oracle.com/en/database/oracle/oracle-database/19/unxar/administering-oracle-databa ...
- python3和python2共存
在window上同时安装py3.5和py2.7,但是命令行敲击python命令后,默认只出现py2.7的信息,敲击python3命令,提示未知的命令. 从网上查了一下,虽然环境变量都添加对了,但是可执 ...
- 我是怎么找到电子书的 - IT篇
转自于:http://my.oschina.net/0757/blog/375908#OSC_h2_8 IT-ebooks http://it-ebooks.info/ http://www.it-e ...
