【线性代数】6-5:正定矩阵(Positive Definite Matrices)
title: 【线性代数】6-5:正定矩阵(Positive Definite Matrices)
categories:
- Mathematic
- Linear Algebra
keywords: - Positive Definite Matrices
- Symmetric Matrices
- Eigenvalues
- Eigenvectors
toc: true
date: 2017-11-24 11:24:21
Abstract: 关于正定矩阵的相关知识总结,正定矩阵在数学中的一个应用
Keywords: Positive Definite Matrices,Symmetric Matrices,Eigenvalues,Eigenvectors
开篇废话
昨晚出了个新闻,红黄蓝还是什么的,发现我们广大人民热情特别高涨,各种谴责啊,阴谋论啊什么,感受到了什么是人言可畏,当我们的呦呦众口指向我们的敌人的时候或者被人陷害成所谓"敌人"的人的时候,那真是踏上一万只脚让人永世不得超生啊,法律不算数,全按照心情办。经济发展迅速,民智并没有开多大,前天在朋友圈里还卖东西,秀美食美景的可爱萌青年们,然后一瞬间变成了社会主义战士,口诛笔伐,还有之前抵制日货,抵制韩货的,说实话,这种人基本的用途的就是贡献劳动力,然后活在忽悠中,说啥信啥,搞民主投票?这种智商也就告别民主了。
再有一个就是删帖,删帖作为治国理政的必要途径,我觉得可以开发个智能分类系统(没准已经在用了)就是自动删帖,人工删太浪费人力,某些公司为了配合组织,也是让删啥删啥,节操算鸡毛,人民币才是硬道理。
然后就是如果小朋友们受到了侵害而没有执法部门保护,或者是执法部门有不作为的现象,而要依靠广大键盘侠,这不是回到原始社会了么?
小朋友们是全人类的希望,应该得到全社会的爱护!
Positive Definite Matrices
正定矩阵,对这个矩阵印象深刻,知道学了这节以后,才知道,正定矩阵就是"Positive Definite Matrices-正的确定矩阵",这个翻译也是耿直,
Positive Definite Matrices 定义为,对称矩阵,并且所有特征值全部大于0
那么我们第一个大问题就是如何确定一个矩阵是不是正定矩阵呢,求特征值肯定是根本方法,定义都说了,对称矩阵,特征值大于0,求出所有特征值,那么自然明朗了,但是有时候我们只需要知道是不是正定矩阵,而不需要知道特征值,这样的话计算代价有点大,我们需要找点别的招数,来避免求特征值。
接下来我们的目标是:
- 找到能快速判断对称矩阵的特征值都是正数
- 正定矩阵的重要应用
本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-6-5转载请标明出处
【线性代数】6-5:正定矩阵(Positive Definite Matrices)的更多相关文章
- 正定矩阵(positive definite matrix)
设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M正定矩阵. 正定矩阵在合同变换下可化为标准型, 即对角矩阵. 所有特征值大于零的对称矩阵也是正定矩阵. ...
- 正定矩阵(definite matrix)
1. 基本定义 在线性规划中,一个对称的 n×n 的实值矩阵 M,如果满足对于任意的非零列向量 z,都有 zTMz>0. 更一般地,对于 n×n 的 Hermitian 矩阵(原矩阵=共轭转置, ...
- a positive definite matrix
https://en.wikipedia.org/wiki/Definite_quadratic_form https://www.math.utah.edu/~zwick/Classes/Fall2 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- 【Math for ML】解析几何(Analytic Geometry)
I. 范数(Norm) 定义: 向量空间\(V\)上的范数(norm)是如下函数: \[ \begin{align} \|·\|:V→R, \notag \\ x→\|x\| \notag \end{ ...
- MIT课程
8.02 Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...
- ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...
- ECCV 2014 Results (16 Jun, 2014) 结果已出
Accepted Papers Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...
- ICLR 2013 International Conference on Learning Representations深度学习论文papers
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...
随机推荐
- Maven配置、使用
一:什么是Maven Maven项目对象模型(POM),可以通过一小段描述信息来管理项目的构建,报告和文档的项目管理工具软件. Maven提供了开发人员构建一个完整的生命周期框架,开发人员可以自动完成 ...
- QMap里面的值任然是一个QMap,在做循环插入的时候需要记得清空。
这个问题是我以前的一个问题,当时由于有其他的事情去处理就忘记了,前段时间我的项目要进行集成测试了,为了避免这个缺陷,只能再把这个问题想起来了,再进行解决.有很多问题你觉得不应该发生,其实很多时候都是逻 ...
- codeforce 839d.winter is here
题意:如果一个子序列的GCD为1,那么这个子序列的价值为0,否则子序列价值为子序列长度*子序列GCD 给出n个数,求这n个数所有子序列的价值和 题解:首先得想到去处理量比较少的数据的贡献,这里处理每个 ...
- Python Selenium、PIL、pytesser 识别验证码
思路: 使用Selenium库把带有验证码的页面截取下来 利用验证码的xpath截取该页面的验证码 对验证码图片进行降噪.二值化.灰度化处理后再使用pytesser识别 使用固定的账户密码对比验证码正 ...
- VBA输入框(InputBox)(六)
InputBox函数提示用户输入值.当输入值后,如果用户单击确定 按钮或按下键盘上的ENTER 键,InputBox函数将返回文本框中的文本.如果用户单击“取消” 按钮,该函数将返回一个空字符串(&q ...
- 使用zrender.js绘制体温单(1)
之前公司请外包做了一个体温单使用的zrender.js 但是代码比较复杂维护性比较低再加上自己技术也不行 最近闲下来的时候看了一下zrender的官网慢慢的摸索并读了下之前的代码,感觉实际并不难,就自 ...
- 使用的jQuery加载源的优势【问题】
[问题]使用的jQuery加载源的优势? [答案]许多用户在访问其他站点时,已经从谷歌或微软加载过 jQuery.所有结果是,当他们访问您的站点时,会从缓存中加载 jQuery,这样可以减少加载时间. ...
- MYSQL日期相关操作
*******MYSQL中取当前周/月/季/年的第一天与最后一天******* 当年第一天: SELECT DATE_SUB(CURDATE(),INTERVAL dayofyear(now())-1 ...
- Trie 树(字典树)
[动画]看动画轻松理解「Trie树」 读音 Trie这个名字取自“retrieval”,检索,因为Trie可以只用一个前缀便可以在一部字典中找到想要的单词. 虽然发音与「Tree」一致,但为了将这种 ...
- 【2017-12-12】Winform----Datagirdview使用
1.数据绑定 DataGirdView.DataSource = list集合 2.复选框 获取复选框选中状态 for (int i = 0; i < dataGridView1.RowCoun ...
