把黑边视为无边,那么答案之和每个点的度数有关

#include <bits/stdc++.h>
using namespace std;
#define int long long
int n,a,b,c,p,d,tot,cnt,deg[5005];
signed main() {
cin>>n>>a>>b>>c>>p>>d;
for(int i=1;i<=n;i++) {
for(int j=i+1;j<=n;j++) {
++tot;
if((a*(i+j)%p*(i+j)%p+b*(i-j)%p*(i-j)%p+c)%p>d) ++deg[i],++deg[j];
}
}
for(int i=1;i<=n;i++) cnt+=deg[i]*(n-deg[i]-1);
cout<<n*(n-1)*(n-2)/6-cnt/2<<endl;
}

Wannafly Camp 2020 Day 6F 图与三角形 - 图论的更多相关文章

  1. Wannafly Camp 2020 Day 1C 染色图 - 组合数学,整除分块

    定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v). 定义函数 g(n,k) 的值为所有包 ...

  2. Wannafly Camp 2020 Day 2K 破忒头的匿名信 - AC自动机,dp

    给定字典和文章,每个单词有价值,求写文章的最小价值 标准的 AC 自动机 dp,设 \(f[i]\) 表示写 \(s[1..i]\) 的最小价值,建立AC自动机后根据 trans 边暴力转移即可 建了 ...

  3. Wannafly Camp 2020 Day 3I N门问题 - 概率论,扩展中国剩余定理

    有一个猜奖者和一个主持人,一共有 \(n\) 扇门,只有一扇门后面有奖,主持人事先知道哪扇门后有奖,而猜奖者不知道.每一轮,猜奖者选择它认为的有奖概率最大(如果有多个最大,随机选一个)的一扇门,主持人 ...

  4. Wannafly Camp 2020 Day 3F 社团管理 - 决策单调性dp,整体二分

    有 \(n\) 个数构成的序列 \({a_i}\),要将它划分为 \(k\) 段,定义每一段的权值为这段中 \((i,j) \ s.t. \ i<j,\ a_i=a_j\) 的个数,求一种划分方 ...

  5. Wannafly Camp 2020 Day 3D 求和 - 莫比乌斯反演,整除分块,STL,杜教筛

    杜教筛求 \(\phi(n)\), \[ S(n)=n(n+1)/2-\sum_{d=2}^n S(\frac{n}{d}) \] 答案为 \[ \sum_{d=1}^n \phi(d) h(\fra ...

  6. Wannafly Camp 2020 Day 2B 萨博的方程式 - 数位dp

    给定 \(n\) 个数 \(m_i\),求 \((x_1,x_2,...,x_n)\) 的个数,使得 \(x_1 \ xor\ x_2\ xor\ ...\ xor\ x_n = k\),且 \(0 ...

  7. Wannafly Camp 2020 Day 2D 卡拉巴什的字符串 - 后缀自动机

    动态维护任意两个后缀的lcp集合的mex,支持在串末尾追加字符. Solution 考虑在 SAM 上求两个后缀的 LCP 的过程,无非就是找它们在 fail 树上的 LCA,那么 LCP 长度就是这 ...

  8. Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元

    给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成 ...

  9. Wannafly Camp 2020 Day 2I 堡堡的宝藏 - 费用流

    感谢这道题告诉我KM求的是 完备 最大权匹配 :( #include <bits/stdc++.h> using namespace std; #define reset(x) memse ...

随机推荐

  1. 常用js封装

    //获取url参数 function getUrlParams(name, url) { if (!url) url = location.href; name = name.replace(/[\[ ...

  2. Python基础知识总结笔记(四)函数

    Python基础知识总结笔记(四)函数python中的函数函数中的参数变量作用域偏函数PFA递归函数高阶函数BIFs中的高阶函数匿名函数lambda闭包Closure装饰器Decorator函数式编程 ...

  3. SpringBoot缓存 --(一)EhCache2.X

    简介: Spring 3.1中开始对缓存提供支持,核心思路是对方法的缓存,当开发者调用一个方法时,将方法的参数和返回值作为key/value缓存起来,当再次调用该方法时,如果缓存中有数据,就直接从缓存 ...

  4. ArcGIS Runtime SDK for Android 加载shp数据,中文乱码问题

    针对ArcGIS10.2版本的解决办法(默认中文编码为OEM): 现有一个图层名称为“图层.shp”,以此为例: 1.拷贝一个cpg文件,修改名称为“图层.cpg”,并用文本打开cpg文件修改编码为“ ...

  5. Java泛型(T)与通配符?

    前言:使用泛型的目的是利用Java编译机制,在编译过程中帮我们检测代码中不规范的有可能导致程序错误的代码.例如,我们都知道list容器可以持有任何类型的数据,所以我们可以把String类型和Integ ...

  6. 记一次mysql的问题处理@20181225

    需求:由于某种原因,导致一次分库分表的环境中ddl添加字段和索引没有完全成功,比如100个分库,只有部分修改成功,需要将没有修改成功的库和表找出来,在手动去执行. 由于线上环境,这里模拟还原一下该问题 ...

  7. 洛谷【P2022 有趣的数】 题解

    题目链接 https://www.luogu.org/problem/P2022 题目描述 让我们来考虑1到N的正整数集合.让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10 ...

  8. t-SNE and PCA

    1.t-SNE 知乎 t-分布领域嵌入算法 虽然主打非线性高维数据降维,但是很少用,因为 比较适合应用于可视化,测试模型的效果 保证在低维上数据的分布与原始特征空间分布的相似性高 因此用来查看分类器的 ...

  9. ASP.NET Identity系列教程-3【运用ASP.NET Identity】

    https://www.cnblogs.com/r01cn/p/5180892.html 14 运用ASP.NET Identity In this chapter, I show you how t ...

  10. PTA 1001 A+B Format

    问题描述: Calculate a+b and output the sum in standard format -- that is, the digits must be separated i ...