洛谷P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
题目链接:
题目分析:
玄学\(dp\)
设\(val[s[i] - 'a' + 1]\)表示字母\(s[i]\)的花费
首先发现对于一个已经回文了的串\(s[i, j]\),在\(s[i - 1]\)的位置上删去和在\(s[j + 1]\)的位置上加上本质上是一样的,所以\(val[s[i] - 'a' + 1]\)直接取增删的最小即可
设\(dp[i][j]\)表示把\(s[i, j]\)变成回文串的最小代价,初始化所有花费为\(INF\),\(dp[i][i] =0\),如果有\(s[i] == s[i + 1]\),那么有\(dp[i][j + 1] = 0\)
然后是玄学的转移方程,稍微分情况讨论一下:
- 若有\(s[i - 1] == s[j + 1]\),则\(dp[i - 1][j + 1] = min(dp[i - 1][j + 1], dp[i][j])\)
- \(dp[i - 1][j] = min(dp[i - 1][j], dp[i][j] + val[s[i - 1] - 'a' + 1])\)
- \(dp[i][j + 1] = min(dp[i][j + 1], dp[i][j] + val[s[j + 1] - 'a' + 1])\)
答案即为\(dp[1][m]\)
代码:
#include<bits/stdc++.h>
#define N (2000 + 10)
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
return cnt * f;
}
const int INF = 1000000000 + 7;
int n, m, x, y;
char s[N], c;
int val[30], dp[N][N];
int main() {
n = read(), m = read();
scanf("%s", s + 1);
for (register int i = 1; i <= n; i++) {
cin >> c;
x = read(), y = read();
val[c - 'a' + 1] = min(x, y);
}
for (register int i = 0; i <= m; ++i)
for (register int j = 0; j <= m; ++j) dp[i][j] = INF;
for (register int i = 1; i <= m; i++) {
dp[i][i] = 0;
if (s[i] == s[i + 1]) dp[i][i + 1] = 0;
}
for (register int l = 0; l <= m; ++l)
for (register int i = 1; i <= m; ++i) {
int j = i + l;
if (s[i - 1] == s[j + 1]) dp[i - 1][j + 1] = min(dp[i - 1][j + 1], dp[i][j]);
dp[i - 1][j] = min(dp[i - 1][j], dp[i][j] + val[s[i - 1] - 'a' + 1]);
dp[i][j + 1] = min(dp[i][j + 1], dp[i][j] + val[s[j + 1] - 'a' + 1]);
}
printf("%d", dp[1][m]);
return 0;
}
洛谷P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome的更多相关文章
- 洛谷 2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
传送门 一道最简单的区间dp,然而我还是抄了题解. //Twenty #include<algorithm> #include<iostream> #include<cs ...
- 2018.06.29 洛谷P2890 [USACO07OPEN]便宜的回文(简单dp)
P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome 时空限制 1000ms / 128MB 题目描述 Keeping track of all the cows c ...
- [DP]P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
题目翻译(借鉴自@ 神犇的蒟蒻) [问题描述] 追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统.他在每头牛身 上安装了一个电子身份标签,当奶牛通过扫描器的时候,系统可以读取奶牛的身 ...
- [USACO07OPEN]便宜的回文Cheapest Palindrome
字串S长M,由N个小写字母构成.欲通过增删字母将其变为回文串,增删特定字母花费不同,求最小花费. 题目描述见上 显然 这是一道区间DP 从两头DP,枚举长度啥的很套 ...
- [luoguP2890] [USACO07OPEN]便宜的回文Cheapest Palindrome(DP)
传送门 f[i][j] 表示区间 i 到 j 变为回文串所需最小费用 1.s[i] == s[j] f[i][j] = f[i + 1][j - 1] 2.s[i] != s[j] f[i][j] = ...
- 洛谷P1207 [USACO1.2]双重回文数 Dual Palindromes
P1207 [USACO1.2]双重回文数 Dual Palindromes 291通过 462提交 题目提供者该用户不存在 标签USACO 难度普及- 提交 讨论 题解 最新讨论 暂时没有讨论 ...
- 洛谷oj U3936(分成回文串) 邀请码:a0c9
题目链接:传送门 题目大意:略 题目思路:DP 先预处理,分别以每个字母为中心处理能形成的回文串,再以两个字母为中心处理能形成的回文串. 然后 dp[i] 表示1~i 能形成的数目最少的回文串. 转移 ...
- 【洛谷4287】[SHOI2011] 双倍回文(Manacher算法经典题)
点此看题面 大致题意: 求一个字符串中有多少个长度为偶数的回文串,它的一半也是回文串. \(Manacher\)算法 这应该是\(Manacher\)算法一道比较好的入门题,强烈建议在做这题之前先去学 ...
- 洛谷 P1207 [USACO1.2]双重回文数 Dual Palindromes
P1207 [USACO1.2]双重回文数 Dual Palindromes 题目描述 如果一个数从左往右读和从右往左读都是一样,那么这个数就叫做“回文数”.例如,12321就是一个回文数,而7777 ...
随机推荐
- ajax 接收json数据的进一步了解
var url = "../searchclasses"; $.ajax({ url: url, type: "post", dataType: "j ...
- [CF1244C] The Football Season【数学,思维题,枚举】
Online Judge:Luogu,Codeforces Round #592 (Div. 2) C Label:数学,思维题, 枚举 题目描述 某球队一共打了\(n\)场比赛,总得分为\(p\), ...
- PHP算法之字符串转换整数 (atoi)
请你来实现一个 atoi 函数,使其能将字符串转换成整数. 首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止. 当我们寻找到的第一个非空字符为正或者负号时,则将该符号与之 ...
- Android Studio 配置快速生成模板代码
前言 Android studio 有提供快速生成模板代码的功能,其实这个功能也可以自定义配置.此篇博客将讲解如何使用此功能 进入Settings 选择 Editor > Live Templa ...
- Ionic POST提交使用普通表单提交数据
使用 和 GET 拼接参数一样拼接 doLogin() { let url = "http://loginApiUrl"; var headers = new Headers() ...
- 背包dp+打表处理——cf999F
考虑每种c都是可以独立进行计算的,所以这题的答案等价于每种c的最优解之和 计算每种c的最优解:把问题转化成求出每种c的最大值,再转化成i个人分j张卡片的最大收益 dp[i,j]表示i个人分j张卡片的最 ...
- Oracle连接字符串总结
Oracle XE 标准连接 Oracle XE(或者"Oracle Database 10g Express Edition")是一个简单免费发布的版本. 以下是语法格式: Dr ...
- 使用ProGuard混淆JAR包
1.在Input/OutPut选项下面,add input 导入需要混淆的jar包2.点击add output,设置混淆后输出jar包的名字和路径.如下图:3.在下面的编辑区右边点击add增加要混淆的 ...
- C# GZipStream 压缩 解压
关于GZipStream压缩解压,网上找了很多资料,完整的不多,要么是针对字符串压缩解压缩的,要么只实现了针对单个文件的压缩解压缩,还有的不支持子文件夹的压缩,实用性都不是很大. 以下整理了压缩解压缩 ...
- javascript中onclick(this)用法和onclick(this.value)用法介绍
onclick(this.value)代码详解 <html> <head> <script language="javascript"> fun ...