阶梯nim游戏
阶梯nim游戏
有n个阶梯,0~n-1,每个阶梯上有一堆石子,编号为i的阶梯上的石子只能移动到i-1上去,每次至少移动一个,最后所有的石子都移动到0号阶梯上了。
结论:奇数阶梯上的石子异或起来,要是0,就先手必败,否则先手必胜
阶梯nim游戏的更多相关文章
- BZOJ1115[POI2009]石子游戏——阶梯Nim游戏
题目描述 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必 ...
- bzoj1115&&POJ1704&&HDU4315——阶梯Nim
BZOJ1115 题意:阶梯Nim游戏大意:每个阶梯上有一堆石子,两个人在阶梯上玩推石子游戏.每人可以将某堆的任意多石子向左推一阶,所有的石子都推到阶梯下了即算成功,即不能推的输. 分析:根据阶梯Ni ...
- 【Nim 游戏】 学习笔记
前言 没脑子选手随便一道博弈论都不会 -- 正文 Nim 游戏引入 这里给出最简单的 \(Nim\) 游戏的题目描述: \(Nim\) 游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\ ...
- BZOJ 1115: [POI2009]石子游戏Kam [阶梯NIM]
传送门 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜 ...
- 阶梯Nim问题
问题形式 有\(n\)个位置\(1...n\),每个位置上有\(a_i\)个石子.有两个人轮流操作.操作步骤是:挑选\(1...n\)中任一一个存在石子的位置\(i\),将至少1个石子移动至\(i-1 ...
- [学习笔记]nim游戏
普通nim游戏: n堆石子,每个人每次对着一堆拿若干个.不能拿者判输. 只有两种情况,先手必胜,先手必败. 先手必胜当且仅当:a1^a2^...^an!=0 证明: 设=x(x不为0),选择最高位和x ...
- P3480 [POI2009]KAM-Pebbles 阶梯NIM
$ \color{#0066ff}{ 题目描述 }$ 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时 ...
- NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结
NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结 经典NIM游戏: 一共有N堆石子,编号1..n,第i堆中有个a[i]个石子. 每一次操作Alice和Bob可以从任意一堆石子中取出任意数量的石子 ...
- $NIM$游戏小总结
$umm$可能之后会写个博弈论总结然后就直接把这个复制粘贴上去就把这个删了 但因为还没学完所以先随便写个$NIM$游戏总结趴$QAQ$ 首先最基础的$NIM$游戏:有$n$堆石子,每次可以从一堆中取若 ...
随机推荐
- c++ pb_ds库,实现 红黑树,Splay
C++ pb_ds库 #include <ext/pb_ds/assoc_container.hpp>#include <ext/pb_ds/tree_policy.hpp> ...
- fasttext的基本使用 java 、python为例子
fasttext的基本使用 java .python为例子 今天早上在地铁上看到知乎上看到有人使用fasttext进行文本分类,到公司试了下情况在GitHub上找了下,最开始是c++版本的实现,不过有 ...
- NtOpenProcess被HOOK,跳回原函数地址后仍然无法看到进程
点击打开链接http://www.ghoffice.com/bbs/read-htm-tid-103923.html
- LeetCode 627. Swap Salary (交换工资)
题目标签: 题目给了我们一个 工资表格,让我们把 男女性别对换. 这里可以利用IF, IF(condition, value_if_true, value_if_false). Java Soluti ...
- SimpleDateFormat日期格式
前言 java中使用SimpleDateFormat类的构造函数SimpleDateFormat(String str)构造格式化日期的格式,通过format(Date date)方法将指定的日期对象 ...
- scala中闭包的使用
闭包的实质就是代码与用到的非局部变量的混合,即: 闭包 = 代码 + 用到的非局部变量 实例1: 匿名函数中引入闭包 val multiplier = (i:Int) => i * factor ...
- sklearn提供的自带数据集
sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在线下载的数据集(Downloaded ...
- USACO06JAN The Cow Prom /// tarjan求强联通分量 oj24219
题目大意: n个点 m条边的图 求大小大于1的强联通分量的个数 https://www.cnblogs.com/stxy-ferryman/p/7779347.html tarjan求完强联通分量并染 ...
- neo4j采坑记
1.安装后启动不起来,解决方案: https://stackoverflow.com/questions/38607283/failed-to-start-neo4j-service 2.一直启动不 ...
- java 3des加密问题记录
3des加密有不同的加密模式和填充模式,这个网上很多不多说了,只要保证加解密的时候加密模式和填充模式保持一致就可以了 首先对于密钥的生成,java中有2种方式: 1.第一种,采用ECB模式和不填充模式 ...