SPOJ 3267 DQUERY(离线+树状数组)
话说这好像HH的项链啊……
然后就说一说上次看到的一位大佬很厉害的办法吧
对于所有$r$相等的询问,需要统计有多少个不同的数,那么对于同一个数字,我们只需要关心它最右边的那一个
比如$1,2,3,4,1,2$,对于所有$r=5$的询问,我们不用去管第一个$1$因为它一定可以被第五个$1$代替
同理,对于所有$r=6$的询问,我们也不需要去管第二个$2$
然后我们可以将所有询问离线,按$r$升序排序
每一次进行扫描,如果一个数没有出现过,就在树状数组中加入,否则就将它上一次出现的位置的那一个删除,再将它加入
//minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#define N 1000050
#define rint register int
using namespace std;
struct ab{
int l,r,id,ans;
} q[N];
int a[N],f[N],n,m,last[N],r;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getchar()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getchar());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
inline void print(int x) {
if(!x) {
putchar();
return;
}
if(x<) putchar('-'),x=-x;
int l=,wt[];
while(x) wt[++l]=x%,x/=;
while(l) putchar(wt[l--]+);
}
inline void add(int x,int y){
while(x<=n)
f[x]+=y,x+=x&(-x);
}
inline int sum(int k){
int s=;
while(k)
s+=f[k],k-=k&(-k);
return s;
}
inline bool cmp(ab x,ab y){
return x.r<y.r;
}
inline bool cmpp(ab x,ab y){
return x.id<y.id;
}
int main(){
//freopen("testdata.in","r",stdin);
n=read();
for(rint i=;i<=n;i++) a[i]=read();
m=read();
for(rint i=;i<=m;i++)
q[i].l=read(),q[i].r=read(),q[i].id=i;
sort(q+,q++m,cmp);
for(rint i=;i<=m;i++){
while(r<q[i].r){
r++;if(last[a[r]]) add(last[a[r]],-);
add(r,),last[a[r]]=r;
}
q[i].ans=sum(q[i].r)-sum(q[i].l-);
}
sort(q+,q++m,cmpp);
for(rint i=;i<=m;i++)
print(q[i].ans),putchar();
return ;
}
SPOJ 3267 DQUERY(离线+树状数组)的更多相关文章
- SPOJ DQUERY 离线树状数组+离散化
LINK 题意:给出$(n <= 30000)$个数,$q <= 2e5$个查询,每个查询要求给出$[l,r]$内不同元素的个数 思路:这题可用主席树查询历史版本的方法做,感觉这个比较容易 ...
- SPOJ DQUERY D-query 离线+树状数组
本来是想找个主席树的题目来练一下的,这个题目虽说可以用主席树做,但是用这个方法感觉更加叼炸天 第一次做这种离线方法,所谓离线,就在把所有询问先存贮起来,预处理之后再一个一个操作 像这个题目,每个操作要 ...
- SPOJ3267 D-query 离线+树状数组 在线主席树
分析:这个题,离线的话就是水题,如果强制在线,其实和离线一个思路,然后硬上主席树就行了 离线的代码 #include <iostream> #include <stdio.h> ...
- SPOJ 3267 D-query(离散化+在线主席树 | 离线树状数组)
DQUERY - D-query #sorting #tree English Vietnamese Given a sequence of n numbers a1, a2, ..., an and ...
- SPOJ DQUERY D-query (在线主席树/ 离线树状数组)
版权声明:本文为博主原创文章,未经博主允许不得转载. SPOJ DQUERY 题意: 给出一串数,询问[L,R]区间中有多少个不同的数 . 解法: 关键是查询到某个右端点时,使其左边出现过的数都记录在 ...
- SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)
DQUERY - D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query ...
- POJ 3416 Crossing --离线+树状数组
题意: 给一些平面上的点,然后给一些查询(x,y),即以(x,y)为原点建立坐标系,一个人拿走第I,III象限的点,另一个人拿II,IV象限的,点不会在任何一个查询的坐标轴上,问每次两人的点数差为多少 ...
- HDU 2852 KiKi's K-Number(离线+树状数组)
题目链接 省赛训练赛上一题,貌似不难啊.当初,没做出.离线+树状数组+二分. #include <cstdio> #include <cstring> #include < ...
- CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组
题目链接:CF #365 (Div. 2) D - Mishka and Interesting sum 题意:给出n个数和m个询问,(1 ≤ n, m ≤ 1 000 000) ,问在每个区间里所有 ...
- CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组(转)
转载自:http://www.cnblogs.com/icode-girl/p/5744409.html 题目链接:CF #365 (Div. 2) D - Mishka and Interestin ...
随机推荐
- git 转移
git push --mirror https://github.com/cloud-pi/drbd-docker-plugin.git
- Codeforces 703E DP + 因数分解 +离散化
题意:给你n个数,和一个数m, 问最小需要多少个数,可以让这些数乘起来是m的倍数.如果有多组,取和最小的那一组. 思路:因为m的范围到1e12,并且和取模相关,所以容易想到处理出m的约数,然后离散化一 ...
- 小程序本地资源无法通过 css 获取
background-image:可以使用网络图片,或者 base64,或者使用<image/>标签
- Scrapy Test
(flappbird) luo@luo-ThinkPad-W540:~$ scrapy startproject myspider0315New Scrapy project 'myspider031 ...
- opennebula 添加kvm主机日志
Sun Sep :: [ReM][D]: Req: UID: HostDelete invoked, Sun Sep :: [ReM][D]: Req: UID: HostDelete result ...
- linux常用的一些命令行操作(ubuntu)
软件安装 sudo apt-get install xxx 压缩和解压缩 1. *.tar 用 tar –xvf 解压 2. *.gz 用 gzip -d或者gunzip 解压 3. *.tar.gz ...
- code3027 线段覆盖2
dp 数据:d[i].a d[i].b d[i].v 分别表示第i条线段的起始点,结束点,价值 先按d[i].b排好序 dp[i]表示前i条线段的最大价值 方程: dp[i]=max{ dp[i-1] ...
- C#变量初始化
在C#中声明变量使用下述语法: datatype identifier;, 例如: int i; 该语句声明int变量i.编译器不允许在表达式中使用这个变量,除非用一个值初始化了改变量.如果你不需要使 ...
- C#记录程序运行时间
主要:using System.Diagnostics;当中有Stopwatch类: 介绍如下: // 摘要: // 提供一组方法和属性,可用于准确地测量运行时间. public class Stop ...
- 单例模式、双检测锁定DCL、volatile(转)
单例模式最要关心的则是对象创建的次数以及何时被创建. Singleton模式可以是很简单的,它的全部只需要一个类就可以完成(看看这章可怜的UML图).但是如果在“对象创建的次数以及何时被创 建”这两点 ...