codevs 2370 小机房的树

时间限制: 1 s

 空间限制: 256000 KB
 题目等级 : 钻石 Diamond
题目描述 Description

小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上。有一天,他们想爬到一个节点上去搞基,但是作为两只虫子,他们不想花费太多精力。已知从某个节点爬到其父亲节点要花费 c 的能量(从父亲节点爬到此节点也相同),他们想找出一条花费精力最短的路,以使得搞基的时候精力旺盛,他们找到你要你设计一个程序来找到这条路,要求你告诉他们最少需要花费多少精力

输入描述 Input Description
第一行一个n,接下来n-1行每一行有三个整数u,v, c 。表示节点 u 爬到节点 v 需要花费 c 的精力。
第n+1行有一个整数m表示有m次询问。接下来m行每一行有两个整数 u ,v 表示两只虫子所在的节点
输出描述 Output Description

一共有m行,每一行一个整数,表示对于该次询问所得出的最短距离。

样例输入 Sample Input

3

1 0 1

2 0 1

3

1 0

2 0

1 2

样例输出 Sample Output

1

1

2

数据范围及提示 Data Size & Hint

1<=n<=50000, 1<=m<=75000, 0<=c<=1000

分类标签 Tags 点此展开

最近公共祖先 图论
资料来自:http://www.tuicool.com/articles/N7jQV32
              http://www.cnblogs.com/wuminye/p/3532397.html

最近公共祖先 LCA 倍增法

【简介】

解决LCA问题的倍增法是一种基于倍增思想的在线算法。

【原理】

原理和同样是使用倍增思想的RMQ-ST 算法类似,比较简单,想清楚后很容易实现。

对于每个节点u , ancestors[u][k] 表示 u 的第2k个祖先是谁。很容易就想到递推式: ancestors[j][i] = ancestors[ancestors[j][i - 1]][i - 1];  根据二进制原理,理论上 u 的所有祖先都可以根据ancestors数组多次跳转得到,这样就间接地记录了每个节点的祖先信息。
     查询LCA(u,v)的时候:
         (一)u和v所在的树的层数如果一样,令u'=u。否则需要平衡操作(假设u更深),先找到u的一个祖先u', 使得u'的层数和v一样,此时LCA(u,v)=LCA(u',v) 。证明很简单:如果LCA(u,v)=v , 那么u'一定等于v ;如果LCA(u,v)=k ,k!=v ,那么k 的深度一定小于 v , u、u'、v 一定在k的子树中;综上所述,LCA(u,v)=LCA(u',v)一定成立。

(二)此时u' 和 v 的祖先序列中一开始的部分一定有所重叠,重叠部分的最后一个元素(也就是深度最深,与u'、v最近的元素)就是所求的LCA(u,v)。这里ancestors数组就可以派上用场了。找到第一个不重叠的节点k,LCA(u,v)=ancestors[k][0] 。 找k的过程利用二进制贪心思想,先尽可能跳到最上层的祖先,如果两祖先相等,说明完全可以跳小点,跳的距离除2,这样一步步跳下去一定可以找到k。

. DFS预处理出所有节点的深度和父节点

inline void dfs(int u)
{
int i;
for(i=head[u];i!=-;i=next[i])
{
if (!deep[to[i]])
{
deep[to[i]] = deep[u]+;
p[to[i]][] = u; //p[x][0]保存x的父节点为u;
dfs(to[i]);
}
}
}
. 初始各个点的2^j祖先是谁 ,其中 ^j (j =...log(该点深度))倍祖先,1倍祖先就是父亲,2倍祖先是父亲的父亲......。 void init()
{
int i,j;
//p[i][j]表示i结点的第2^j祖先
for(j=;(<<j)<=n;j++)
for(i=;i<=n;i++)
if(p[i][j-]!=-)
p[i][j]=p[p[i][j-]][j-];//i的第2^j祖先就是i的第2^(j-1)祖先的第2^(j-1)祖先
}
.从深度大的节点上升至深度小的节点同层,如果此时两节点相同直接返回此节点,即lca。 否则,利用倍增法找到最小深度的 p[a][j]!=p[b][j],此时他们的父亲p[a][]即lca。 int lca(int a,int b)//最近公共祖先
{
int i,j;
if(deep[a]<deep[b])swap(a,b);
for(i=;(<<i)<=deep[a];i++);
i--;
//使a,b两点的深度相同
for(j=i;j>=;j--)
if(deep[a]-(<<j)>=deep[b])
a=p[a][j];
if(a==b)return a;
//倍增法,每次向上进深度2^j,找到最近公共祖先的子结点
for(j=i;j>=;j--)
{
if(p[a][j]!=-&&p[a][j]!=p[b][j])
{
a=p[a][j];
b=p[b][j];
}
}
return p[a][];
}

附上题解:

 #define N 50100
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#define L 17
struct Edge{
int v,last,c;
}edge[N*];
int head[N],p[N][L];
int deep[N]={};
int root[N]={};
long long dis[N]={};
int n,m,u,v,c,t=;
void add_edge(int u,int v,int w)
{
++t;
edge[t].v=v;/*建边*/
edge[t].c=w;
edge[t].last=head[u];
head[u]=t;
//root[u]++;
}
void input()
{
scanf("%d",&n);
for(int i=;i<n;++i)
{
scanf("%d%d%d",&u,&v,&c);
add_edge(u,v,c);
add_edge(v,u,c);
}
memset(p,-,sizeof(p));/*因为节点编号是从0开始的,所以把祖先不存在,设为-1*/
}
void dfs(int u,long long di)
{
dis[u]=di;/*统计u到根节点的距离*/
for(int l=head[u];l;l=edge[l].last)
{
if(!deep[edge[l].v])
{
deep[edge[l].v]=deep[u]+;/*处理孩子的深度*/
p[edge[l].v][]=u;/*初始化p数组*/
dfs(edge[l].v,di+edge[l].c);
}
}
}
void init()
{
int i,j;
for(j=;(<<j)<n;j++)
for(int i=;i<n;++i)
if(p[i][j]=-)
p[i][j]=p[p[i][j-]][j-];/*DP处理出i的所有2^j祖先是谁*/
}
int lca(int a,int b)/*求最近公共祖先*/
{
int i,j;
if(deep[a]<deep[b]) swap(a,b);
for(i=;(<<i)<=deep[a];++i);
i--;/*i为估计a到根节点的最远距离,下边的平衡操作,跳点从i开始,一定可以实现*/
for(j=i;j>=;--j)
if(deep[a]-deep[b]>=(<<j))/*倍增缩短a与b之间的距离*/
a=p[a][j];
if(a==b) return a;/*当a和b到了同一深度的时候,判断是否已经相同了*/
for(int j=i;j>=;--j)
{
if(p[a][j]!=-&&p[a][j]!=p[b][j])
{
a=p[a][j];/*最终的a是lca的子节点*/
b=p[b][j];
} }/*先大步大步的蹦,每蹦一步,路程减少,下次蹦前一次的一半,直到蹦不了了,就是答案*/
return p[a][];
}
/*当a有祖先,并且a,b的祖先不相同的时候,(我们想要寻找的就是lca的子节点,也就是最小深度的p[a][j]!=p[b][j]),根据二进制原理,一定可以通过各种组合走到每一个祖先*/
int main()
{
input();
dfs(,);/*题目意思是0为根节点*/
/*for(int i=0;i<n;++i)
{
if(root[i]==2)
{
dfs(i,0);/*如果是一棵二叉树,可以统计出度为2的点是根节点*/
break;
}
}*/
init();
scanf("%d",&m);
while(m--)
{
scanf("%d%d",&u,&v);
int zu=lca(u,v);/*在线算法,可以按照顺序查询*/
cout<<dis[u]+dis[v]-*dis[zu]<<endl;/*求最近距离的公式*/
}
return ;
}

LCA(倍增在线算法) codevs 2370 小机房的树的更多相关文章

  1. CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先)

    CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先) 题意分析 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天, ...

  2. Codevs 2370 小机房的树

    2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为 ...

  3. codevs——2370 小机房的树

    2370 小机房的树  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 小机房有棵焕狗种的树,树上有N个 ...

  4. Codevs 2370 小机房的树 LCA 树上倍增

    题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天,他们想爬到一个节点上去搞基,但是作为两只虫子, ...

  5. 放一道比较基础的LCA 的题目把 :CODEVS 2370 小机房的树

    题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天,他们想爬到一个节点上去搞基,但是作为两只虫子, ...

  6. codevs 2370 小机房的树(LCA)

    过了这么长的时间终于开始看LCA了... 有一次训练题卡在LCA当时不会...拖了好久好久...其实现在还是不会... 只会tarjan... 传送门 板子题咯 tarjan的算法就是基于先序遍历的顺 ...

  7. 【codevs2370】小机房的树 LCA 倍增

    2370 小机房的树  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0 ...

  8. 小机房的树 codevs 2370

    2370 小机房的树  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 小机房有棵焕狗种的树 ...

  9. codevs2370 小机房的树 x

    2370 小机房的树  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond   题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号 ...

随机推荐

  1. js_网页导出pdf文件

    打印当前页面,一开始我认为是需要输出pdf的,后来了解的需求是能够打印就可以了.需求既然都研究了,记录下. 更好的打印方式,window.print();会弹出打印对话框,打印的是window.doc ...

  2. Tinyos 第三版Make系统

    1.make系统安装 cd tools ./Bootstrap ./configure make sudo make install 2.make系统结构 3.第三版Makerules文件部分解析 # ...

  3. Coursera在线学习---第五节.Logistic Regression

    一.假设函数与决策边界 二.求解代价函数 这样推导后最后发现,逻辑回归参数更新公式跟线性回归参数更新方式一摸一样. 为什么线性回归采用最小二乘法作为求解代价函数,而逻辑回归却用极大似然估计求解? 解答 ...

  4. imperva配置文件的导入导出

    imperva配置文件的导入导出 Full_expimp.sh       //进行备份 1导入 2导出 输入密码后 1 全部导出 是否想导出失败的数据 默认密码是system的密码 输入导出的路径 ...

  5. 73.Vivado使用误区与进阶——在Vivado中实现ECO功能

    关于Tcl在Vivado中的应用文章从Tcl的基本语法和在Vivado中的应用展开,继上篇<用Tcl定制Vivado设计实现流程>介绍了如何扩展甚至是定制FPGA设计实现流程后,引出了一个 ...

  6. 安全测试===CSRF攻击简介

    http://www.cnblogs.com/hyddd/archive/2009/04/09/1432744.html

  7. Docker practice

    Docker 实践 目标 创建一个基于最新版Ubuntu的镜像,在该镜像中更新apt包源并安装NTP package,最后将该新镜像提交到本地私有的registry中. 本地创建私有Registry ...

  8. Dev Express 安装

    Dev Express 安装 点击DevExpressUniversalTrialComplete-20151209.exe开始安装 选择需要安装的产品   选择需要安装的产品目录,这里设置为D盘 开 ...

  9. 移动端touch滑屏事件

    <script> var windowHeight = $(window).height(), $body = $("body");// console.log($(w ...

  10. C# 解决窗体闪烁

    C# 解决窗体闪烁 在Windows窗体上造成“闪烁”的窗体上有很多控制.造成这种闪烁的原因有两个: 1.当控件需要被绘制时,Windows发送一个控件两个消息.第一个(WM_ERASEBKGND)导 ...