正则化(Regularization)是机器学习中抑制过拟合问题的常用算法,常用的正则化方法是在损失函数(Cost Function)中添加一个系数的\(l1 - norm\)或\(l2 - norm\)项,用来抑制过大的模型参数,从而缓解过拟合现象。

\(l1 - norm\)的正则项还具有特征选择的能力,而\(l2 - norm\)的正则项没有。直观上,对于小于1的模型参数,\(l1 - norm\)的惩罚力度要远远大于\(l2 - norm\)的惩罚力度,这是\(l1 - norm\)特征选择能力的直接驱动。

带正则化的逻辑回归模型(Logistc Regression)损失函数如下式:

\[J(w) =  - Log\left( {\frac{1}{m}\sum\limits_{i = 1}^m {{{\left( {p({x^{(i)}})} \right)}^{{y^{(i)}}}}{{\left( {1 - p({x^{(i)}})} \right)}^{1 - {y^{(i)}}}}} } \right) + \frac{\lambda }{{2m}}\left\| w \right\|_2^2(1)\]

下面以梯度下降法和牛顿法为例,说明带正则项的训练算法:

1. 梯度下降法

\[w^{(k + 1)} = {w^{(k)}} - \alpha \nabla J({w^{(k)}})\]

系数\(w\)的更新公式为:

\[\begin{array}{c}
{w^{(k + 1)}} = {w^{(k)}} - \alpha \frac{1}{m}\sum\limits_{i = 1}^m {\left( {p({x^{(i)}}) - {y^{(i)}}} \right){x^{(i)}}} - \frac{\lambda }{m}{w^{(k)}}\\
= {w^{(k)}}(1 - \frac{\lambda }{m}) - \alpha \frac{1}{m}\sum\limits_{i = 1}^m {\left( {p({x^{(i)}}) - {y^{(i)}}} \right){x^{(i)}}}
\end{array}\]

可见,正则化后的迭代算法和没有正则化的迭代形式非常像,唯一的差别在与每次迭代都要多减去一个\(\frac{\lambda }{m}{w^{(k)}}\)。相当于如果当前的\(w_j\)已经比较大了,那么,\(w\)要先多减去一点,然按梯度方向进行迭代。

另外,上式的正则化项与\(m\)成反比,也就是说,样本数越大,过拟合的问题越小,正则化的作用越弱。

2. 牛顿法

\[{w^{(k + 1)}} = {w^{(k)}} - {H^{ - 1}}\left( {{w^{(k)}}} \right)\nabla J({w^{(k)}})\]

引入l2-norm正则项后,一阶导数和Hessian矩阵如下所示:

\[\nabla J = \frac{1}{m}\sum\limits_{i = 1}^m {\left( {\left( {p({x^{(i)}}) - {y^{(i)}}} \right){x^{(i)}}} \right)}  - \frac{\lambda }{m}{w^{(k)}}\]

\[H = \frac{1}{m}\sum\limits_{i = 1}^m {p({x^{(i)}})\left( {1 - p({x^{(i)}})} \right){x^{(i)}}{{({x^{(i)}})}^T}} + \frac{\lambda }{m}\left[ {\begin{array}{*{20}{c}}
0&0&0&0\\
0&1&0&0\\
0&0&{...}&0\\
0&0&0&1
\end{array}} \right]\]

与梯度下降法类似,正则化在牛顿法中也是起到惩罚大的\(w_j\)的作用。另外,由于加了正则化项,原来不可逆的Hessian矩阵也变的可逆了。

正则化(Regularization)的更多相关文章

  1. [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...

  2. zzL1和L2正则化regularization

    最优化方法:L1和L2正则化regularization http://blog.csdn.net/pipisorry/article/details/52108040 机器学习和深度学习常用的规则化 ...

  3. 7、 正则化(Regularization)

    7.1 过拟合的问题 到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fittin ...

  4. 斯坦福第七课:正则化(Regularization)

    7.1  过拟合的问题 7.2  代价函数 7.3  正则化线性回归 7.4  正则化的逻辑回归模型 7.1  过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集( ...

  5. (五)用正则化(Regularization)来解决过拟合

    1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...

  6. [笔记]机器学习(Machine Learning) - 03.正则化(Regularization)

    欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们 ...

  7. CS229 5.用正则化(Regularization)来解决过拟合

    1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...

  8. [C3] 正则化(Regularization)

    正则化(Regularization - Solving the Problem of Overfitting) 欠拟合(高偏差) VS 过度拟合(高方差) Underfitting, or high ...

  9. 1.4 正则化 regularization

    如果你怀疑神经网络过度拟合的数据,即存在高方差的问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,但是你可能无法时时准备足够多的训练数据,或者获取更多数据的代价很高.但正则 ...

  10. 机器学习(五)--------正则化(Regularization)

    过拟合(over-fitting) 欠拟合 正好 过拟合 怎么解决 1.丢弃一些不能帮助我们正确预测的特征.可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA) 2.正则化. ...

随机推荐

  1. closest()一个在评论里很有用的函数

    实例 本例演示如何通过 closest() 完成事件委托.当被最接近的列表元素或其子后代元素被点击时,会切换黄色背景: $( document ).bind("click", fu ...

  2. MySQL 5.1.63 单机配置多实例(简单配置)

    需求: 在一台服务器上通过源码编译安装一个版本为5.1.63版本MySQL数据库: 方案:将所有配置文件与数据等均存放在/home/zhaoshuangshuang下.在同一个MySQL中运行两个实例 ...

  3. Windows.Andy.Code4App.dll Win8.1/WP8.1通用类库@ver1.0.1

    在上篇 Windows.Andy.Code4App.dll  Win8.1/WP8.1通用类库@ver1.0.0 已经对Win8.1和WP8.1部分扩展通用类库做了说明,这篇继续对通用类库做扩展.写的 ...

  4. Linux Mint SmoothTask2的安装方法

    首先,先下载smooth task:点击这里下载 下载之后解压缩,里面有个install文件,点击打开: To install plasmoid unpack archive, go to the d ...

  5. PAT-乙级-1019. 数字黑洞 (20)

    1019. 数字黑洞 (20) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 给定任一个各位数字不完全相同的4位 ...

  6. 自助Linux之问题诊断工具strace

    转  http://www.cnblogs.com/bangerlee/archive/2012/02/20/2356818.html 引言 “Oops,系统挂死了..." “Oops,程序 ...

  7. DJANGO的ORM的Q查询作多字段外键的模糊查询样码

    工作中用到的,存照一下. from django.db.models import Q if self.kwargs.has_key('search_pk'): search_pk = self.kw ...

  8. MyEclipse server窗口 Could not create the view: An unexpected exception was thrown 错误解决

    MyEclipse 打开后有时候莫名的在server窗口里抛出“Could not create the view: An unexpected exception was thrown”错误,解决办 ...

  9. 李洪强iOS开发之XMPP

      XMPP历史 这个xmpp框架在2008年开始,不过是一个简单地RFC实现.提供一个最小的代理去接受三种xmpp的基本类型presence.message.iq.因为framwork只提供了最小的 ...

  10. VO,DTO,DO,PO的划分

    实体类(VO,DTO,DO)的划分   经常会接触到VO,DO,DTO的概念,本文从领域建模中的实体划分和项目中的实际应用情况两个角度,对这几个概念进行简析. 得出的主要结论是:在项目应用中,VO对应 ...